4/23/2018

Vision: Security-integrated CS Education

SQL Injection — Attacks and Defenses

Integrate (inject) cybersecurity topics into CS courses
— CS students have no way to escape cybersecurity education

— CS students understand the correlation and interplay between
cybersecurity and other sub-areas of CS
— Job, career,

Evaluate the teaching and learning effectiveness
Rui Zhao, Zhiju Yang, Yi Qin, and Chuan Yue

Promote the adoption of this approach
O COLORADO MINES
enginee

i Nadonal Sclene Foundation Thanks!
This activity is supported by the National Science Foundation under Grant No. 1619841.
Outline What is SQL Injection

* SQL Injection * Atype of injection attack: SQL commands are

— Unchecked inputs change SQL execution logic injected into data-plane input in order to effect

. . L the execution of predefined SQL commands.

* Defense in practice - new applications

— Prepared Statements

— Stored procedures * |t occurs when:

— User input escaping

— Data enter a program from an untrusted source
. - — The data used to dynamically construct a SQL quer:
* Three research papers — detecting vulnerabilities v v query
in legacy applications

(https://www.owasp.org/index.php/SQL_Injection)

SQL Injection Consequence A typical example of SQL Injection

¢ Allow attackers to e A SQL call construction

— Drop data from database — String query = "SELECT * FROM accounts WHERE
acct=""+ request.getParameter(“name") + " ";
— Alter or insert data

— Dump sensitive data for attacker to retrieve
— Take control of the database

The value of “name” could be

—“ Bob”
* SELECT * FROM accounts WHERE acct='Bob'
. o op 1=
* No. 1 at OWASP Top 10 YUInerabllltles 2013 .+ SELECT * FROM accounts WHERE accte " or '1'='1
— https://www.owasp.org/index.php/Top_10_2013- — “’or1=1--" -- comment the rest of the query
Al-Injection

« SELECT * FROM accounts WHERE acct="' or 1=1--'

H
:

SQL Injection — lllustrated

Account: [DR 11—

1]

DB Table
8
@

Balance:
Submit

1. Application presents a form to
the attacker

2. Attacker sends an attack in the
form data

3. Application forwards attack to
the database in a SQL query

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as

normal and sends results to the
user

Defenses - New Applications

* Prevent user supplied input (which contains
malicious SQL) from affecting the logic of the
executed query

— Prepared statements
— Stored procedures

— User input escaping

4/23/2018

Defense Option 1

String custname = request.getParameter("customerName");

String query = "SELECT account_balance FROM user_data WHERE
user_name=7?";

PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, custname);
ResultSet results = pstmt.executeQuery();

// look for a customerName which literally matched the entire string

4/23/2018

Avoiding SQL Injection Flaws

Recommendations

* Avoid the interpreter entirely, or
* Use an interface that supports bind variables (e.g., prepared
or stored p es),
©OBind variables allow the interpreter to distinguish between code and
data

* Encode all user input before passing it to the interpreter
* Always perform ‘white list’ input validation on all user supplied input
* Always minimize database privileges to reduce the impact of a flaw

j
References

* For more details, read the
https://www.owasp.org/index.php/SQL Injection_Prevention_Cheat_Sheet

Defense Option 1

* Prepared Statements (with Parameterized
Queries)
— First define all the SQL code
— Then pass in each parameter to the query later

* Allows the database to distinguish between
code and data, regardless of what user input is
supplied

Defense Option 2

* Stored Procedures
— The same effect as the use of prepared statements

— Stored procedures is that its SQL code is defined and
stored in the database itself, and then called from the
application

String custname = request.getParameter("customerName");

CallableStatement cs = connection.prepareCall("{call
sp_getAccountBalance(?)}");

cs.setString(1, custname);

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Defense Option 3

* Escaping All User Supplied Input (e.g., OWASP ESAPI library)
— Cannot guarantee it will prevent all SQL Injection in all situations
— Should only be used, with caution, to retrofit legacy code in a cost effective way

Codec ORACLE_CODEC = new OracleCodec();

String query =
"SELECT user_id FROM user_data WHERE user_name =" +

ESAPl.encoder().encodeForSQL(ORACLE_CODEC, req.getParameter("useriD")) +

""and user_password =" +

ESAPl.encoder().encodeForSQL(ORACLE_CODEC, req.getParameter("pwd")) +"";

“AMNESIA: Analysis and Monitoring for NEutralizing
SQL Injection Attacks”, ASE, 2005
William G. J. Halfond, Alessandro Orso

* Combined static & dynamic program analysis

— Static part: automatically build a model of the legitimate
queries that could be generated by the application;

— Dynamic part: monitors the dynamically generated queries
at runtime and checks them for compliance with the
statically-generated model.

— Queries that violate the model are classified as illegal,
prevented from executing on the database, and reported
to the application developers and administrators.

“Automatic Generation of XSS and SQL Injection
Attacks with Goal-Directed Model Checking”,
USENIX Security Symposium, 2008
Michael Martin, Monica S. Lam

* Proposed QED, a goal-directed model-
checking system
— Automatically generates attacks exploiting taint-
based vulnerabilities in large Java web
applications.
* Model checking: given a model of a system,
exhaustively and automatically check whether
queries meet the model specification.

4/23/2018

Interesting Research on SQL Injection
(more on vulnerability detection)

« “AMNESIA: Analysis and Monitoring for NEutralizing SQL Injection
Attacks”, ASE, 2005
— William G. J. Halfond, Alessandro Orso

« “Automatic Generation of XSS and SQL Injection Attacks with
Goal-Directed Model Checking”, USENIX Security Symposium, 2008
— Michael Martin, Monica S. Lam

* “Automated Testing for SQL Injection Vulnerabilities: An Input
Mutation Approach”, ISSTA, 2014
— Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, Nadia Alshahwan

AMNESIA

Static Phase

* |nstrumentation: (St Anaiyie
adding calls to the
monitor that check
the queries at
runtime

Dynamic Phase
(Runtima Monitoring)

* Analysis:
— Query to model
mapping

Figure 6: High-level overview of AMNESIA.

Automatic Generation of XSS and SQL
Injection Attacks

* SQL injection and cross-site scripting are both
instances of taint vulnerabilities:
— untrusted data from the user is tracked as it flows
through the system,

— if it flows unsafely into a security-critical operation, a
vulnerability is flagged.

* We need to analyze more than just individual
requests to be sure we have found all
vulnerabilities in a web application.

Automatic Generation of XSS and SQL
Injection Attacks

* Theinput application is first instrumented Applcion
according to the provided PQL query which !
specifies the vulnerability.

Pl Query

* Theinstrumented application and a set of
seed input values form a harnessed o
program. Purumete

* The harnessed program is then fed to the
model checker, along with stub
implementations of the application server’s
environment to systematically explore the
space of URL requests.

* The results of that model checker ;
correspond directly to sequences of URLs Amirw ; @
that demonstrate the attack paths. '
Figure 4 QB architccture, User-supplid information

4/23/2018 19

Automated Testing for SQL Injection
Vulnerabilities

Mutation Operations 2l

MO0t

— Behavior-changing:

alter |Ogic MO_cmt (#) 1o an in

10_qot

MO_wsp

. MO._chr

- Syntax-repalrlng i
MO_per

— Obfuscation \:i

Summary

* SQL Injection
— Unchecked inputs change SQL execution logic

* Defense in practice - new applications
— Prepared Statements
— Stored procedures

Thank you!
Q&A

* Three research papers - vulnerability detection

— User input escaping

4/23/2018

“Automated Testing for SQL Injection Vulnerabilities:
An Input Mutation Approach”, ISSTA, 2014
Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, Nadia
Alshahwan

* A black-box automated testing approach

* Applies a set of mutation operators that are
specifically designed to increase the likelihood
of generating successful SQL Injection attacks

— Some of the mutation operators aims to obfuscate
the injected SQL code fragments to bypass
security filters

Automated Testing for SQL Injection
Vulnerabilities

WSDL Test
nerator
mput | | %°
samples|

—
XAVIER lest reports

Figure 2: Components of Xavier and how Xavier is
used in practice.

XAVIER: Proposed mutation approach
WSDL: Web Service Definition Language
WAF: Web Application Firewall

SUT: Web Service Under Test

