
4/23/2018

1

SQL Injection – Attacks and Defenses

Rui Zhao, Zhiju Yang, Yi Qin, and Chuan Yue

14/23/2018

Vision: Security-integrated CS Education

• Integrate (inject) cybersecurity topics into CS courses
– CS students have no way to escape cybersecurity education

– CS students understand the correlation and interplay between
cybersecurity and other sub-areas of CS

– Job, career,

• Evaluate the teaching and learning effectiveness

• Promote the adoption of this approach

Thanks!

This activity is supported by the National Science Foundation under Grant No. 1619841.

24/23/2018

Outline

• SQL Injection
– Unchecked inputs change SQL execution logic

• Defense in practice - new applications
– Prepared Statements
– Stored procedures
– User input escaping

• Three research papers – detecting vulnerabilities
in legacy applications

34/23/2018

What is SQL Injection

• A type of injection attack: SQL commands are
injected into data-plane input in order to effect
the execution of predefined SQL commands.

• It occurs when:

– Data enter a program from an untrusted source

– The data used to dynamically construct a SQL query

(https://www.owasp.org/index.php/SQL_Injection)

44/23/2018

SQL Injection Consequence

• Allow attackers to
– Drop data from database

– Alter or insert data

– Dump sensitive data for attacker to retrieve

– Take control of the database

• No. 1 at OWASP Top 10 Vulnerabilities – 2013
– https://www.owasp.org/index.php/Top_10_2013-

A1-Injection

54/23/2018

A typical example of SQL Injection

• A SQL call construction
– String query = "SELECT * FROM accounts WHERE

acct=‘ " + request.getParameter(“name") + "‘ ";

• The value of “name” could be
– “ Bob ”

• SELECT * FROM accounts WHERE acct= 'Bob'

– “ ’ or '1'='1 ”
• SELECT * FROM accounts WHERE acct= '' or '1'='1’

– “ ’ or 1=1 --” -- comment the rest of the query
• SELECT * FROM accounts WHERE acct= '' or 1=1--'

64/23/2018

4/23/2018

2

SQL Injection – Illustrated
Fi

re
w

al
l

Hardened OS

Web Server

App Server

Fi
re

w
al

l

D
at

ab
as

es

Le
ga

cy
 S

ys
te

m
s

W
eb

 S
er

vi
ce

s

D
ir

ec
to

ri
es

H
u

m
an

 R
es

rc
s

B
ill

in
g

Custom Code

APPLICATION
ATTACK

N
et

w
o

rk
 L

ay
er

A
p

p
lic

at
io

n
 L

ay
er

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

at
io

n

Tr
an

sa
ct

io
n

s

C
o

m
m

u
n

ic
at

io
n

Kn
o

w
le

d
ge

 M
gm

t

E-
C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
io

n
s

HTTP

request



SQL

query



DB Table





HTTP

response




"SELECT * FROM

accounts WHERE

acct=‘’ OR 1=1--

’"

1. Application presents a form to
the attacker

2. Attacker sends an attack in the
form data

3. Application forwards attack to
the database in a SQL query

Account Summary

Acct: Alice Balance: $123

Acct: Bob Balance: $456

Acct: Cris Balance: $789

Acct: You Balance: $0

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as
normal and sends results to the
user

Account:

Balance:

Account:

Balance:

74/23/2018

Avoiding SQL Injection Flaws

• Avoid the interpreter entirely, or

• Use an interface that supports bind variables (e.g., prepared
statements, or stored procedures),

Bind variables allow the interpreter to distinguish between code and
data

• Encode all user input before passing it to the interpreter

• Always perform ‘white list’ input validation on all user supplied input

• Always minimize database privileges to reduce the impact of a flaw

Recommendations

• For more details, read the
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

References

84/23/2018

Defenses - New Applications

• Prevent user supplied input (which contains
malicious SQL) from affecting the logic of the
executed query

– Prepared statements

– Stored procedures

– User input escaping

94/23/2018

Defense Option 1

• Prepared Statements (with Parameterized
Queries)

– First define all the SQL code

– Then pass in each parameter to the query later

• Allows the database to distinguish between
code and data, regardless of what user input is
supplied

104/23/2018

Defense Option 1

String custname = request.getParameter("customerName");

String query = "SELECT account_balance FROM user_data WHERE
user_name = ? ";

PreparedStatement pstmt = connection.prepareStatement(query);

pstmt.setString(1, custname);

ResultSet results = pstmt.executeQuery();

// look for a customerName which literally matched the entire string

114/23/2018

Defense Option 2

• Stored Procedures
– The same effect as the use of prepared statements
– Stored procedures is that its SQL code is defined and

stored in the database itself, and then called from the
application

String custname = request.getParameter("customerName");

CallableStatement cs = connection.prepareCall("{call
sp_getAccountBalance(?)}");

cs.setString(1, custname);

124/23/2018

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

4/23/2018

3

Defense Option 3

• Escaping All User Supplied Input (e.g., OWASP ESAPI library)
– Cannot guarantee it will prevent all SQL Injection in all situations

– Should only be used, with caution, to retrofit legacy code in a cost effective way

Codec ORACLE_CODEC = new OracleCodec();

String query =

"SELECT user_id FROM user_data WHERE user_name = '" +

ESAPI.encoder().encodeForSQL(ORACLE_CODEC, req.getParameter("userID")) +

"' and user_password = '" +

ESAPI.encoder().encodeForSQL(ORACLE_CODEC, req.getParameter("pwd")) +"'";

134/23/2018

Interesting Research on SQL Injection
(more on vulnerability detection)

• “AMNESIA: Analysis and Monitoring for NEutralizing SQL Injection
Attacks”, ASE, 2005
– William G. J. Halfond, Alessandro Orso

• “Automatic Generation of XSS and SQL Injection Attacks with
Goal-Directed Model Checking”, USENIX Security Symposium, 2008
– Michael Martin, Monica S. Lam

• “Automated Testing for SQL Injection Vulnerabilities: An Input
Mutation Approach”, ISSTA, 2014
– Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, Nadia Alshahwan

144/23/2018

“AMNESIA: Analysis and Monitoring for NEutralizing
SQL Injection Attacks”, ASE, 2005

William G. J. Halfond, Alessandro Orso

• Combined static & dynamic program analysis
– Static part: automatically build a model of the legitimate

queries that could be generated by the application;

– Dynamic part: monitors the dynamically generated queries
at runtime and checks them for compliance with the
statically-generated model.

– Queries that violate the model are classified as illegal,
prevented from executing on the database, and reported
to the application developers and administrators.

154/23/2018

AMNESIA

• Instrumentation:
adding calls to the
monitor that check
the queries at
runtime

• Analysis:
– Query to model

mapping

164/23/2018

“Automatic Generation of XSS and SQL Injection
Attacks with Goal-Directed Model Checking”,

USENIX Security Symposium, 2008
Michael Martin, Monica S. Lam

• Proposed QED, a goal-directed model-
checking system

– Automatically generates attacks exploiting taint-
based vulnerabilities in large Java web
applications.

• Model checking: given a model of a system,
exhaustively and automatically check whether
queries meet the model specification.

174/23/2018

Automatic Generation of XSS and SQL
Injection Attacks

• SQL injection and cross-site scripting are both
instances of taint vulnerabilities:
– untrusted data from the user is tracked as it flows

through the system,

– if it flows unsafely into a security-critical operation, a
vulnerability is flagged.

• We need to analyze more than just individual
requests to be sure we have found all
vulnerabilities in a web application.

184/23/2018

4/23/2018

4

Automatic Generation of XSS and SQL
Injection Attacks

• The input application is first instrumented
according to the provided PQL query which
specifies the vulnerability.

• The instrumented application and a set of
seed input values form a harnessed
program.

• The harnessed program is then fed to the
model checker, along with stub
implementations of the application server’s
environment to systematically explore the
space of URL requests.

• The results of that model checker
correspond directly to sequences of URLs
that demonstrate the attack paths.

194/23/2018

“Automated Testing for SQL Injection Vulnerabilities:
An Input Mutation Approach”, ISSTA, 2014

Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, Nadia
Alshahwan

• A black-box automated testing approach

• Applies a set of mutation operators that are
specifically designed to increase the likelihood
of generating successful SQL Injection attacks

– Some of the mutation operators aims to obfuscate
the injected SQL code fragments to bypass
security filters

204/23/2018

Automated Testing for SQL Injection
Vulnerabilities

• Mutation Operations

– Behavior-changing:
alter logic

– Syntax-repairing

– Obfuscation

214/23/2018

Automated Testing for SQL Injection
Vulnerabilities

• XAVIER: Proposed mutation approach
• WSDL: Web Service Definition Language
• WAF: Web Application Firewall
• SUT: Web Service Under Test

224/23/2018

Summary

• SQL Injection
– Unchecked inputs change SQL execution logic

• Defense in practice - new applications
– Prepared Statements

– Stored procedures

– User input escaping

• Three research papers - vulnerability detection

Thank you!
Q & A

234/23/2018

