
CSCI 403: Databases

9 - Relational Database Design and Entity-Relationship

Diagrams

Database Design

The notion that a database should be designed
(rather than just thrown together in an ad-hoc
fashion) leads to the development of Entity-
Relationship Diagrams (ERDs) in around 1976 by
Chen.

We can consider three different levels at which
design activities occur:

• Conceptual - understanding the data enti-
ties and relationships among them. This
is a high-level design which may be helpful
for communicating with non-technical stake-
holders about the data model. ERDs live at
this level. (While ERDs may help with com-
munication, it does require learning a new
visual language.)

• Logical - mapping from an ERD to a SQL
(or other) DBMS. This is concerned mainly
with the realization of a data model into an
actual database schema.

• Physical - the bare-metal stuff: where files,
indexes, etc. should live on disk, network
architectures, etc.

We will only be concerned in this lecture with
the conceptual level of design. The following lec-
ture will take us through the logical level with
an algorithm that maps an ERD to a relational
schema.

ERD Components

The three main components of an ERD are the
entities, attributes, and relationships.

Entities - things or objects with independent
existence, such as persons, products, companies,
courses. Entities are the nouns of the ERD.

Attributes - the properties describing an entity.

Relationships - the way entities interact or refer
to each other. Relationships are the verbs of the
ERD. For example, a person supervises a depart-
ment, an instructor teaches a course, a person
works on a project.

ERD: Visual Language

In this section we will develop an ERD for courses
at Mines, modeling something very close to the
actual tables we have in the database. (The ERD
we develop is actually a better data model. The
database tables need a slight refactoring.) Along
the way we will examine all the elements of the
visual language for an ERD.

Entities and Attributes

Let’s start with an entity. A course is an en-
tity in our database, as something which has
a real existence. Entities are visualized using
a rectangle containing the name of the entity:

course

An entity has attributes which describe it;
for example, a course has a course title. At-
tributes are ovals with the name of the attribute:

title

Attributes are connected to their entity via
straight lines:

1



course

title

Attributes may be designated as keys, which
has basically the same meaning as a key in the
relational model of the database: a key is a value
which is unique for all instances of an entity
(therefore uniquely identifying an instance). Key
attributes have their names underlined.

Attributes may also be composite. A compos-
ite attribute represents some property of an entity
which is not itself atomic, but which is composed
of smaller sub-attributes. For example, a name
attribute for a person entity might further break
down into first and last names. In the diagram we
are developing, the course entity has a composite
key, designation, which is composed of course id
and section id. Figure 1 shows the full course en-
tity with all of its attributes. The reason in this
diagram for the composite attribute is that keys
cannot be broken up over multiple attributes in
an ERD. Each underlined attribute is assumed to
be a key on its own; therefore, a key with multi-
ple attributes must be combined into a composite
key attribute.

Attributes may also be multivalued. Multival-
ued attributes are shown as ovals with a double
border; the attribute meetings in 1 is a multi-
valued attribute. A multivalued attribute is one
which may have multiple values for a single in-
stance of an entity. For example, a car entity
might have a multivalued attribute for color, since
some cars have more than one color; a person
might have multiple titles (or even names). In
the case of a course, a course at mines may meet
in different rooms at different times on different
days. I’ve chosen to model this as a composite
multivalued attribute for our course entity.

Other modeling choices are available; for
instance, a meeting could be modeled as a
weak entity owned by course. A weak entity is
one which is not wholly defined except in rela-
tionship with another entity. In particular, a weak
entity will not have any keys, but may have a
partial key. Weak entities are designated using a

course

titledesignation hours

course id section id

meetings

days time room

Figure 1: The full course entity

rectangle with a double border (see the section
entity in figure 4). We will return to the weak
entity a bit later when we refine our model.

Finally, a model may have derived attributes.
A derived attribute is one which can be com-
puted from other attributes or components of the
model. For instance, age might be derivable from
birthdate. A derived attribute is represented as a
dashed oval.

Relationships

A relationship is drawn using a diamond
shape containing a descriptive relationship name:

teaches

Relationships must be attached to two or more
entities with straight lines (we focus on the case
of two entities for this lecture). The connected
entities are the ones participating in the relation-
ship. The teaches relationship connects the in-
structor entity and the course entity in figure 2.

Relationships may also denote

2



courseinstructor
1 N

teaches

Figure 2: The teaches relationship and its participating entities

cardinality ratios by marking each connec-
tion to the relationship with 1 or N (or M). The
cardinality ratio gives the maximum number of
instances of the entity participating on each
side of the relationship. For instance, 1 on the
instructor side of the teaches relationship tells
us that a course has at most 1 instructor. An
N (or M) represents “many”; an instructor may
teach 0 or more courses. The possible cardinality
ratios are 1:1, 1:N, and N:M. Cardinality may be
specified more exactly using ranges (see book for
details).

A closely related concept is the participation
of an entity in a relationship. An entity is said
to have total participation in a relationship if the
existence of an instance of the entity depends on
there being a related instance on the other side.
Total participation is represented using a doubled
line connection on the side with total participa-
tion, whereas partial participation uses a single
line. For example, in figure 2, we see that a course
must have an instructor (while the opposite is not
true). In some sense, whereas cardinality ratios
give us a maximum, participation constraints give
us a minimum.

A relationship connected to a weak entity, in
which the other side of the relationship is the
owning entity, is called an identifying relationship,
and is drawn using a double border (see the has
sections relationship in figure 4).

Finally, a relationship may also have associated
attributes. These are represented using the usual
attribute ovals attached by straight lines to a re-
lationship diamond. Relationship attributes rep-
resent some properties unique to the relationship
which don’t properly belong to any of the con-
nected entities. There are no examples of this
in our example diagram, but the book gives an
example.

Complete Example

A full example based on what we’ve discussed so
far is given in figure 3. The course entity has al-
ready been thoroughly described. The instructor
entity is fleshed out with attributes; the instruc-
tor’s name is a key attribute, and other attributes
are office and email. An additional entity, de-
partment, is shown in relationship with instruc-
tor. This relationship is N:M, signifying that an
instructor can belong to more than one depart-
ment, while a department may have more than
one instructor within it. (This is a common situ-
ation at other institutions; not sure if it happens
at Mines.)

The ERD in figure 3 is a fairly accurate re-
flection of the relations in the course database.
However, an initial design is rarely “perfect” -
modeling is an iterative process. In particular,
this design feels as if it is combining two inde-
pendent concepts into the course entity; courses
and sections. As we will see when we discuss
normalization, there are clues to bad design in
the database, such as redundancy in some of the
fields; for instance, a course should have a course
title that doesn’t vary by section, but that isn’t
well reflected in the design, and in the database
we see that course title is repeated information
- it is redundant over all sections of the course.
Ditto for course hours (and description, if we had
such, etc.)

This suggests that sections should be separated
from courses. Since sections are not truly inde-
pendent, however, it makes sense to model them
as a weak entity owned by a course (no section
exists independent of a course). See figure 4 for
the final (for now) model.

3



course

titledesignation hours

course id section id

meetings

days time room

instructor
1 N

teaches

emailofficename

department

N

M

is member of

name chair Etc.

Figure 3: A complete example for a Mines courses database

4



section

title hourscourse id

section id

meetings

days time room

instructor
1 N

teaches

emailofficename

department

N

M

is member of

name chair Etc.

course

1

N

has sections

Figure 4: A refined model for the Mines courses database

5



Final Notes

One thing we didn’t address above was the pos-
sibility that a relationship can be recursive; that
is, an entity can be related to itself. An example
from the book is that of an employee entity which
also tracks the supervisor information about each
employee. Since supervisors are themselves em-
ployees, we model this situation with 1:N rela-
tionship from the employee table to itself. For
further clarification, the lines on each side of the
relationship can be annotated with a description
of the nature of the relationship, e.g., ”Supervi-
sor” and ”Supervisee”.

Also not covered (except to mention its exis-
tence) is the possibility of higher-order relation-
ships, also known as n-ary relationships. These
are somewhat rare, although certainly not impos-
sible. An example of this is a relationship between
three entities: vendor, part, and project. The re-
lationship represents the situation that a partic-
ular part may be supplied by a particular vendor
for a particular project at a company. See the
book for more discussion of this topic.

6


