CSCl 403: Databases
8 - Miscellaneous SELECT queries, More DDL

Join Clauses

Inner Joins

Joins are conveniently constructed using the
WHERE clause of a SELECT query; however,
another approach is available, which is to use a
JOIN clause.

Example:

SELECT course_id, instructor, office
FROM mines_courses JOIN
mines_cs_faculty ON instructor = name;
is equivalent to

SELECT course_id, instructor, office
FROM mines_courses, mines_cs_faculty
WHERE instructor = name;

This most common join is formally known as
an “inner join". Thus, the above query can also
be expressed as
SELECT course_id, instructor, office
FROM mines_courses INNER JOIN
mines_cs_faculty ON instructor = name;

Outer Joins

As we discussed when we looked at joins the first
time, an inner join will only return rows that
match in the two joined tables; in the example
above, we only get rows from mines_courses with
matching instructor names in mines_cs_faculty;
similarly, we only get rows from mines_cs_faculty
with matching names in mines_courses (in the lat-
ter case, it happens to be all rows).

Sometimes it is desirable to see all rows from
one table, joining in data from another table
where available. The technique is called an outer
join, and comes in three flavors: left, right, and
full.

A left outer join uses the same syntax as above,
but with the keywords LEFT OUTER replacing

INNER!. In the case of a left outer join, all rows
in the table on the left hand side of the JOIN
clause will be returned; where data is available in
the table on the right hand side, it too will be
returned, with NULLs filling in when data is not
available.

E.g.,

SELECT course_id, instructor, office
FROM mines_courses LEFT OUTER JOIN
mines_cs_faculty ON instructor = name;

This shows all rows from mines_courses, with
office info for CS faculty only (and NULLs for
everyone else). If we instead do
SELECT course_id, name, office
FROM mines_courses RIGHT OUTER JOIN
mines_cs_faculty ON instructor = name;
we get a right outer join, and thus all rows from
mines_cs_faculty together with any matching
info from mines_courses. Note that this does not
select all rows from mines_courses!

If we want to select all rows from both ta-
bles, we can use a full outer join. As you might
expect, the keyword FULL replaces RIGHT in
the above query. Now we get all rows from
mines_courses and all rows from mines_cs_faculty,
with the matching tuples showing data from both
tables as usual.

Natural Joins (Equijoins)

Another join type lets us shorten the join clause
a bit in the case when the join conditions simply
equate all attributes sharing the same name in
both tables. For example, mines_courses and
mines_courses_meetings are only usefully joined
by equating the crn attribute in both tables;
since this is the only attribute which appears in
both tables, we can do a natural join:

In Oracle, there is a special operator, (+), which
can be used in a WHERE clause join to effect outer
joins. Watch out for this if you work with Oracle.



SELECT * FROM mines_courses NATURAL
JOIN mines_courses_meetings

WHERE instructor = ‘Painter-Wakefield,
Christopher’;

Set operations

Since we can view a relation as a set of tuples
with the same schema, it is natural to expect
that we can apply set operations to relations, and
so we can. Specifically, SQL provides the oper-
ators UNION, INTERSECTION, and EXCEPT.
These provide set union, intersection, and differ-
ence, and can be applied to the results of two or
more SELECT queries.

For a trivial example, a UNION can replace
an OR in a WHERE clause (this is not a recom-
mended use, | provide it only for example):
SELECT * FROM mines_courses WHERE
course_id LIKE '"CSCI%'

UNION
SELECT * from mines_courses WHERE course_id
LIKE 'LAIS%";

Note that the two relations must have compat-
ible schemas, that is, all the types must match.
The names of the resulting relation are taken
from the first query in the union; names in the
second (and third, fourth, ...) queries do not
have to match (just the types of the columns
must match).

Note that all of the set operators will return a
true set, not a multiset, unless you add the key-
word ALL after the set operator. That is, queryl
UNION query?2 will result in a relation with all du-
plicate tuples removed, whereas queryl UNION
ALL query2 retains any duplicates.

Other SELECT voodoo

There are many more techniques we cannot cover
in this course, such as WITH queries, recursive
queries, etc. Some of these will be covered in the
textbook, so you can at least get some picture of
their use.

More DDL

ALTER TABLE

ALTER TABLE lets us modify tables that have
already been created. Here are a few of the more
common uses:
Adding a primary key:
ALTER TABLE tablename ADD PRIMARY KEY
(attrl, attr2, ...);
Adding a foreign key:
ALTER TABLE tablel
ADD FOREIGN KEY (attril, attr2, ...)
REFERENCES table2 (attrl, attr2, ...);
Adding a column:
ALTER TABLE tablename
ADD COLUMN columnname type;

DROP

DROP objecttype objectname; lets us drop
tables, views, constraints, etc.

Views

A view is like a saved query given a name; you
can select from it just like any other relation, but
underlying it is a SELECT query, not a simple
table. So views can be as complex as desired
(with joins, unions, whatever).

Syntax is identical to CREATE TABLE AS, just
VIEW instead of TABLE:

CREATE VIEW viewname AS SELECT ...;

You can treat the view thus created as any
other table for purposes of selection; you cannot
perform insert, update, or delete queries on views,
although you can achieve a similar behavior using
triggers (a future topic). You also cannot add
indices to the view - it will use the underlying
table indices instead.

Sequences

A sequence is a database object which generates
integer sequences. These are created for you, for
instance, when you create a table with a column
of type serial. To create a sequence manu-
ally, use the CREATE SEQUENCE ...; DDL com-
mand. Sequences can be created which are as-
cending, descending, starting at specific values,
allowing cycling, etc. The basic sequence starts



at 1, ascends by 1 on each use, and does not
allow cycling, e.g:

CREATE SEQUENCE my_sequence;

To use and manipulate sequences, you use a
set of sequence functions. The most often used
function is nextval, which, as its name suggests,
gets the next value from the sequence and incre-
ments the sequence. For example,

SELECT nextval(‘my_sequence’) ;

will return a 1 on the first usage, 2 on the next
usage, etc. Note that you have to pass in the
sequence name as a string literal!

Other functions include currval, which re-
turns the value most recently obtained using
nextval for the specified sequence, and setval,
which lets you change the state of the sequence
(essentially dictating what nextval and currval
will return on their next invocation.)



