
CSCI 403: Databases

7 - Aggregate Functions and GROUP BY

Aggregate Functions

SQL has a number of aggregate functions - func-
tions which summarize a whole relation or part of
a relation. The aggregate functions are:

• COUNT - counts the number of non-NULL
entries in a column, or non-NULL tuples in
a relation

• SUM - adds the non-NULL entries in a col-
umn

• MAX - finds the maximum non-NULL entry
in a column

• MIN - finds the minimum non-NULL entry
in a column

• AVG - takes the average of the non-NULL
entries in a column

Note that each of these results in a scalar
result. Examples:
SELECT COUNT(*) FROM mines courses;

SELECT COUNT(instructor) FROM

mines courses;

SELECT AVG(max credits) FROM

mines courses;

Grouping

Grouping lets us compute aggregates on sub-
groups of rows, as organized by distinct values
of some subset of attributes of the relation. The
general form of a grouping query is:
SELECT A1, A2, ..., FN1(A3), FN2(A4),

...

FROM table1, table2, ...

WHERE conditions

GROUP BY A1, A2, ...;

In the above, FN represents some aggregate
function. In a GROUP BY query, the most im-
portant thing to understand is that the set of at-
tributes SELECTed in addition to the aggregate
function expressions must be a subset of the at-
tributes in the GROUP BY clause. That is, if we
SELECT an attribute, we must also GROUP BY
it, or the query is invalid.

The result of the GROUP BY query is a set of
tuples with the distinct values of the selected at-
tributes together with aggregate functions com-
puted on the subset of tuples from the relation
which share the distinct values. For instance,
SELECT instructor, COUNT(*)

FROM mines courses

GROUP BY instructor;

will return all distinct instructors (including NULL
as a distinct “value”) and the count of tuples in
the mines courses table for each instructor. (In
the case of this query, it is a count of the dis-
tinct course CRNs associated with an instructor
- not exactly a measure of how many courses an
instructor teaches.)

Grouping is applied after any WHERE condi-
tions are applied.

GROUP BY can be combined with ORDER
BY, but only if ORDER BY is applied to either
attributes in the GROUP BY clause or to any
(not necessarily SELECTed) aggregate functions
on the relation. (Also, renaming of aggregate
function result columns is often a good idea for
readability in the result, and the column alias
can be used in the ORDER BY clause.) For
example, either of the following is valid:
SELECT instructor, COUNT(*)

FROM mines courses

GROUP BY instructor

ORDER BY instructor;

and SELECT instructor, COUNT(*) AS

count

FROM mines courses

1



GROUP BY instructor

ORDER BY count;

Another example, showing that you can OR-
DER BY an aggregate function not SELECTED
on:
SELECT instructor, COUNT(*)

FROM mines courses

GROUP BY instructor

ORDER BY SUM(max credits), instructor;

A final example, answering the question:
”What MWF timeslots have the most courses
scheduled at Mines?”
SELECT begin time, COUNT(*)

FROM mines courses meetings

WHERE days = ’MWF’

GROUP BY begin time

ORDER BY COUNT(*) DESC;

HAVING

Sometimes it is desirable to filter grouped data
based on some condition which can be applied to
the aggregate functions computed on the groups.
The HAVING clause acts like a WHERE clause
which is applied after grouping (as opposed to
WHERE, which is applied before grouping). For
instance, suppose we want to list only instructors
responsible for more than 5 CRNs:
SELECT instructor, count(*)

FROM mines courses

GROUP BY instructor

HAVING count(*) > 5;

You can have both WHERE and HAVING con-
ditions in your query.

2


