
CSCI 403: Databases

6 - Subqueries

Subqueries

Also known as nested queries, subqueries al-
low you to use the results from nested SELECT
queries in the SELECT, FROM, and WHERE
clauses of another SELECT query, in the WHERE
clause of a DELETE query, and in the WHERE
and SET clauses of an UPDATE query.

Evaluating a Subquery

Recall that a SELECT query returns a relation,
i.e., a set of tuples. In the case of a subquery we
need to separate the possible results into those
with no tuples, those with exactly one tuple, and
those with multiple tuples. Some uses of sub-
queries require zero or one result, whereas others
can handle multiple results.

Another way of looking at this is that a sub-
query may result in:

• A relation

• A tuple

• A (scalar) value

• NULL

Subqueries in WHERE

Most applications of subqueries tend to be in the
WHERE clause of some outer query. Note that
WHERE clauses occur in SELECT, DELETE, and
UPDATE queries, and thus we can use subqueries
in all of those cases.

IN and NOT IN

If we view the result of our subquery as being a
relation (e.g., a set of tuples of any size), then the
primary use of the subquery is with the operator

IN. IN tests the tuples of a subquery result for
a value match with some attribute or expression
in the main query, resulting in a Boolean TRUE
if a match is found, and FALSE otherwise. The
expression being tested can be a scalar or a tuple,
and the rows in the subquery result must match
the expression in degree and type.

Example:
SELECT course id FROM mines courses

WHERE instructor IN

(SELECT name FROM mines cs faculty);

The subquery is given in parentheses, and
in this instance, returns rows with a single
attribute. If we wish to compare tuple values
instead, the query might look like (assuming we
had separate last and first names in our tables):
SELECT course id FROM mines courses

WHERE (instr first, instr last) IN

(SELECT first, last FROM

mines cs faculty);

Here we must enclose the attributes being
compared in parentheses to mark them off as a
tuple.

Note that the above query can equivalently be
expressed using a join:
SELECT course id

FROM mines courses AS mc,

mines cs faculty AS mcf

WHERE mcf.name = mc.instructor;,
although it is equivalent in this case only be-
cause each choice of instructor can match at
most one row in mines cs faculty (otherwise the
two queries would produce the same values, but
in different multiplicities). Adding DISTINCT to
both queries would ensure their equivalence, and
in general, subqueries in the WHERE clause can
often be rewritten using joins.

If we change the query to use NOT IN instead
of IN, we select the set of rows where the expres-
sion does not match any results from the sub-
query. (This can be equivalently expressed using

1



an OUTER JOIN and an IS NULL test (see next
lecture for outer joins), but the NOT IN query
may be easier to write and understand.)

Comparison with Single Tuple or
Scalar Result

If a subquery can be guaranteed to return zero
or one rows, then a number of additional options
become available. In particular, the result of such
a query can be used with comparison operators,
particularly = and <>. For example, to obtain
faculty information about CS faculty who do not
teach CSCI 403, we can do:
SELECT * FROM mines cs faculty

WHERE name <>

(SELECT instructor FROM mines courses

WHERE course id = ’CSCI403’);

When the returned value is scalar and compa-
rable, we can also use comparison operators such
as <, <=, >, and >=.

Note that our query will fail if the subquery re-
turns more than one row; the SQL engine will re-
port an error. In the above query, we can produce
the error by replacing ’CSCI403’ with ’CSCI262’,
which has two rows in the mines courses table.

When the subquery returns 0 rows, then the
return values are interpreted as NULL, and thus
will cause any comparison to be false.

Correlated Subqueries

In a correlated subquery, rows in the nested
query are selected using some value from the
outer query in the nested query’s WHERE clause.
This results in a correlation between the inner
query and the tuples selected in the outer query.
For example:
SELECT DISTINCT instructor, course id

FROM mines courses AS mc1

WHERE course id IN

(SELECT course id

FROM mines courses AS mc2

WHERE mc2.course id = mc1.course id

AND mc2.instructor <>

mc1.instructor);

To understand what this query is doing, we
must first understand how the SQL engine pro-
cesses a correlated subquery (at least conceptu-
ally). Conceptually, you can think of the corre-
lated subquery being executed once for each row

of the outer query. So we iterate over every row
in mines courses and see if the course id is in the
result set from the nested query. Inside the nested
query, we have access to the values of attributes
in the outer query for the current row. In this
case, we look for rows in mines courses where
the course id matches the course id in the cur-
rently iterated row, but where the instructor does
not match the instructor in the currently iterated
row. That is, we only take rows in the outer query
when there exists a row in mines courses which
matches in course id but not in instructor. In ef-
fect, this query is finding out the instructors and
courses where different instructors teach different
sections.

Once again, this query could be expressed us-
ing a join of mines courses to itself. Which you
use may depend on a variety of factors; which is
most clear to understand, which one is easier to
express in application software, etc.

EXISTS and UNIQUE

In the above query, we didn’t really need to
check to see if course id was in the result set
for the correlated subquery; it would suffice for
there to be any result whatsoever (1 or more
rows). The EXISTS operator tests a subquery
for a non-zero number of rows in the result
(NOT EXISTS tests for zero rows). The above
query could be rewritten using EXISTS as:
SELECT DISTINCT instructor, course id

FROM mines courses AS mc1

WHERE EXISTS

(SELECT course id

FROM mines courses AS mc2

WHERE mc2.course id = mc1.course id

AND mc2.instructor <>

mc1.instructor);

Yet another operator that can be applied to a
subquery is UNIQUE. This operator simply tests
to see if the result tuples from a query are all
unique (e.g., that the result is a set rather than
a multiset).

Subqueries in FROM

Since the result of a SELECT query is simply a
relation, we can treat a subquery as if it were an
unnamed table, and select from it. For a trivial

2



example,
SELECT course id FROM
(SELECT course id, instructor
FROM mines courses) AS mc

WHERE mc.instructor LIKE ’Painter%’;

Subqueries in SELECT and
SET

You can use a subquery returning a single
(scalar) value in other situations where a scalar
expression is appropriate. For instance, you can
use a subquery to obtain a value inside the
SELECT clause of a query, for instance:
SELECT instructor, course id,

(SELECT office

FROM mines cs faculty AS mcf

WHERE mcf.name = instructor) AS

office

FROM mines courses;

It is also occasionally useful to use a subquery
to retrieve a value that you want to set some
column to in an update query (typically using a
correlated subquery):
UPDATE table1 AS T1

SET attribute =

(SELECT val FROM table2 AS T2

WHERE condition on attributes of T1,

T2)

WHERE condition on T1;

Note that the above is uniquely useful in that it
acts kind of like a join inside an UPDATE query.

3


