
CSCI 403: Databases

4 - Basic DDL

Schema

In the relational model of the database, we used
schema as a term to describe the names and at-
tributes of relations and the constraints on the
relations in a database. In the SQL standard,
schema is defined more broadly as a container for
database objects, including tables, constraints,
views, indexes, etc. A SQL database can con-
tain many schemas.

• Like namespaces, a schema allows us to sep-
arate logical units in a database and avoid
name collisions.

• Schemas also makes for easier application of
security policies by letting us grant permis-
sions on whole schemas at a time rather than
table by table.

• Schemas are generally something created
and managed by the database administra-
tor/owner, not by the database user or pro-
grammer. (Acknowledging that of course,
programmers may also be DBAs or DB own-
ers!)

• You do not (AFAIK) have rights to create
schemas in the course database. You have
your own schema, named by your Mines id.
Anything you create by default will be cre-
ated in your personal schema. You also have
read-only access to a schema named “pub-
lic”.

Catalog

In SQL, the catalog can be viewed as either a
higher-level container containing schemas, or as
the set of system tables within the database de-
scribing all of the other objects in the database.
All relational DBMSes have some form of system

tables which can be read to determine the struc-
ture of objects in the database. To see the system
tables in psql, enter the command “\dS” at the
prompt.

Table Creation

SQL uses a very “English-like” syntax. To create
a table in SQL, you issue a CREATE TABLE com-
mand. A somewhat abbreviated syntax of the
command looks like:
CREATE TABLE [schemaname.]tablename ({
columnname datatype [NOT NULL] [UNIQUE]
[PRIMARY KEY] | table constraint } [,...])

Which probably looks like gibberish... you will
need to learn how to read SQL documentation,
most of which looks like this. Briefly, anything in
[] is optional, while the construct { A | B } means
you can have A or B. If you see [,...], that means
you can have more copies of the last optional
thing (with a comma separator). Anything else
is required.

Here’s an example of creating a throwaway ta-
ble, showing some of the different data types you
might use:
CREATE TABLE yourid.stuff (

id serial PRIMARY KEY,

name text NOT NULL,

age integer,

gender char(1),

salary numeric(9,2),

favorite constant double precision,

date hired date);

This will create a table named “stuff” in the
schema “yourid” with several columns, each of a
different type. (Note that text and serial types
are specific to PostgreSQL, although similar types
exist in other DBMSes.) This construction sets
the column “id” as a primary key for the table
(just the one column in the key), and the name

1

field is constrained to not contain NULL val-
ues. We can also create foreign key references or
other constraints within the table creation state-
ment. Table constraints can also be created in a
separate declaration in the comma-separated list
within the (); here’s the same table, but with a
two-column primary key (on name and age):
CREATE TABLE yourid.stuff (

id serial,

name text NOT NULL,

age integer,

gender char(1),

salary numeric(9,2),

favorite constant double precision,

date hired date,

PRIMARY KEY (name, age));

Foreign key constraints can also be created in
the CREATE TABLE command:
CREATE TABLE yourid.otherstuff (

other id serial PRIMARY KEY,

stuff id integer REFERENCES

yourid.stuff (id));

is equivalent to
CREATE TABLE yourid.otherstuff (

other id serial PRIMARY KEY,

stuff id integer,

FOREIGN KEY (stuff id) REFERENCES

yourid.stuff (id));

Types

SQL defines a number of types for attributes in
your relations, and most DBMSes define addi-
tional types. Some types that you will find useful
are listed below.
Integers

• INTEGER - 32-bit integers

• SMALLINT - 16-bit integers

• BIGINT - 64-bit integers

Fixed-precision numeric (exact)

• NUMERIC(w,p) - Defines numbers with a
maximum of w digits, and a precision of 2

• DECIMAL(w,p) - same as NUMERIC(w,p)

Floating point (inexact)

• REAL - 32-bit floating point

• DOUBLE PRECISION - 64-bit floating point

Strings

• CHAR(n) - strings of length exactly n,
padded with spaces if necessary

• VARCHAR(n) - variable length strings of
max length n

• TEXT - variable length strings, no limit
(PostgreSQL type)

Date/Time

• DATE - holds dates. You can enter DATE
values as strings in the format ’YYYY-MM-
DD’, other formats maybe possible depend-
ing on DBMS.

• TIME - holds times. Format ’HH:MM:SS’,
can also add decimal points after for sub-
second times. Optionally, timezone can also
be included.

• TIMESTAMP - date and time.

Other types

• BOOLEAN - holds true/false values - various
formats are compatible

• SERIAL - an auto-incrementing integer type
(PostgreSQL type)

• MONEY

• . . . many more

Type Conversion

There are several ways to convert one type to
another in PostgreSQL. The standard SQL way
is to use the CAST function:
CAST (expression AS type)

e.g.,
SELECT CAST(’1/2/2016’ AS DATE) AS

foo;.
Generally speaking, if the database can work

out how to convert a type, it will do so without
any special effort on your part. In particular, the
database can usually figure out how to convert
string representations of numbers, dates, times,
etc. into the corresponding actual types. NULLs
get left as NULLs.

However, you have to be careful when trying
to convert, for instance, all entries in a column in

2

a table - if not all the entries are recognizable as
the type you are converting to, the query will fail.
For instance, if a string column mostly contains
integers, but a few rows have ’unknown’ or ’N/A’
or some other string, the database will refuse to
try converting them to a numeric type.

Another (more compact) way to do casts in
PostgreSQL (not portable to other systems) is
the :: operator, which is used as follows:
expression::type

e.g., SELECT ’1/2/2016’::DATE AS foo;

There are other, more involved ways to do type
conversions using functions and/or the CASE
statement, but generally you want to avoid the
complication of these approaches.

Default values

Another option when creating a table is to set a
default value for a column. The default value will
be used whenever a new tuple (row) is INSERTed
(see next lecture) into the table, but no value is
provided for the column. For instance:
CREATE TABLE yourid.stuff (

id serial PRIMARY KEY,

name text NOT NULL,

salary numeric(9,2) DEFAULT 0.00,

date hired date DEFAULT CURRENT DATE);

creates a table where the salary field defaults to
zero, and where the date hired field defaults to
the current date (the date on which the row was
created), using the SQL standard function CUR-
RENT DATE.

The SERIAL type mentioned above is actually
implemented as an integer type with the default
value being obtained via the function nextval()

applied to a sequence object associated with the
column. A sequence is just a counter object
which can be queried for its current value (cur-
rval()) or its next value (which also increments
the counter). The value of the counter can also
be set (using setval()).

CREATE... AS

An easy way to create a table from a SELECT
query; do
CREATE TABLE schemaname.tablename AS

SELECT ... ;

This will create a table with attributes and
types determined by the SELECT query result.

Column renaming together with functions, joins,
etc., makes this a powerful way to create a new
table. Note, however, that this does not create
any keys or constraints - these will have to be
added on using ALTER TABLE.

Notes on Workflow

Tables/schemas are generally created only occa-
sionally and modified (relatively) seldom there-
after. [You may have a different experience in an
agile environment; one reason NoSQL is popular
right now is the “schema-less” nature of NoSQL
databases.]

When making tables, it is easy to make small
mistakes or wish you had done something differ-
ently. Changes after the fact are often harder
than simply dropping everything and starting
over. Thus: make scripts! Your scripts should
(optionally) drop everything, then create all of
your tables and constraints, load all of your data,
etc. Re-run until you are happy with the result.
(Having these scripts will help a lot downstream
when your application goes into development for
version 2...)

ALTER TABLE

When you do want to modify a table in place -
which of course happens - then you want the AL-
TER TABLE command. You can do almost any-
thing with this command (see the PostgreSQL
documentation), including adding and removing
columns, renaming columns, changing data types
of columns, adding and removing constraints,
setting column default values, etc.

3

