
CSCI 403: Databases

3 - Basic SQL Retrieval Queries

SELECT

The most basic retrieval query looks like
SELECT * FROM <tablename>;

or
SELECT a1, a2, . . . FROM <tablename>;

• ai is an attribute of the relation (a column
of the table)

• * stands for all attributes

This query selects all rows. By using the sec-
ond form of the query, we choose only the at-
tributes we are interested in, in order, from the
relation (table). This is called a “projection”.

The result of a query is a relation. It is anony-
mous (has no name), but otherwise is like any
other relation; the attributes for the result rela-
tion are the attributes selected in the query (and
have the same name and order). This has cer-
tain implications that we’ll examine further later
in the lecture.

WHERE

Typically want only some rows:
SELECT <attributes>

FROM <tablename>

WHERE <condition>;

The <condition> is a Boolean expression on
the attributes or functions of the attributes of the
table.

E.g.,
SELECT course id FROM mines courses

WHERE instructor = ‘Painter-Wakefield,

Christopher’;

gets the course ids of all courses taught by me.
There are many operators and functions appli-

cable to the WHERE condition. E.g., to get all
courses not taught by me, use the “not equals”
operator, which is <>, e.g., SELECT . . . WHERE

instructor <> ‘Painter-Wakefield,

Christopher’;

You have access to all the other usual rela-
tional operators: <, >, <=, >=. There is also
a shortcut operator, BETWEEN, which tests for
(inclusive) containment in some interval. E.g.,
SELECT * FROM mines courses

WHERE enrollment BETWEEN 20 AND 45;.
This is equivalent to
SELECT * FROM mines courses

WHERE 20 <= enrollment

AND 45 >= enrollment;

Combine expressions into compound expres-
sions using AND and OR; AND has precedence
over OR (or can use parentheses to force order
of evaluation). NOT can be used to invert any
Boolean expression.

Recall that NULL values are not comparable -
you can not, for instance, test to see if an at-
tribute is NULL by comparing using =. Instead,
there is a special operator, IS NULL, which tests
for NULL values:
SELECT * FROM mines courses

WHERE instructor IS NULL;.
To test for non-NULL values, use IS NOT NULL.

A useful operator on string attributes is LIKE,
which lets you do wildcard comparisons. To
get all courses taught by me or Dr. Mehta, for
instance:
SELECT course id FROM mines courses

WHERE instructor LIKE ‘Painter%’ OR

instructor LIKE ‘Mehta%’;

In wildcard expressions, % stands in for zero
or more characters, so ‘%foo%’ would find all
text containing the string “foo”, whereas ‘bar%’
only finds strings that start with “bar”. Another
wildcard is the underscore, , which matches a
single character. This forces there to be exactly
one character in that position, but it can be any
character. E.g., SELECT . . . WHERE course id

LIKE ‘ 4 ’; would get all rows for 400-level

1



courses in any subject (e.g., CSCI403, LAIS404,
CEEN443, etc.)

Operators in Other Clauses

In addition to the relational operators discussed
above, you have access to the normal mathe-
matical operators, which can be used in expres-
sions in most any clause. The relational opera-
tors above (evaluating to true/false) can also be
used. For instance, you can SELECT the result of
a mathematical operation on some attributes or
constants; you can even use the database query
engine as a calculator, if you want:
SELECT 16 * 22 - 17;

See the PostgreSQL documentation for all the
operators available.

Functions

Many functions available, including mathemat-
ical, string, type conversion, etc. See function
reference in PostgreSQL documents for examples
(not all functions available in PostgreSQL are
standard SQL.) An example of a useful function
is substring():
SELECT substring(course id from 1 for

4) AS subject FROM mines courses WHERE

. . . ;
This query gets just the 4-letter subjects (e.g.,
CSCI, LAIS, CEEN) from the mines courses
table.

Names and Aliasing

Note above the use of the keyword AS. This key-
word lets us rename attributes in our SELECT
query for the output relation. In the example
above, the application of the substring() function
results in a not very informative attribute name
(substring) for the output relation, so I renamed
it to be “subject”. This affects e.g., output col-
umn names in your query tool, names of columns
(entries in a dictionary, e.g.) when querying from
a programming language, and so forth. It will also
come in handy in some situations when we join
two or more tables together (to avoid name col-
lisions) and in ORDER BY clauses and GROUP
BY clauses.

Name collisions when joining (see below) can
also be resolved by specifying the table name to-

gether with the column:
SELECT mines courses.course id

FROM mines courses;

We can also alias tables and use the aliases to
resolve columns in a join query (very useful!) For
example, the above query could be rewritten as
SELECT mc.course id

FROM mines courses AS mc;

The AS keyword is optional, so this is equiva-
lent to
SELECT mc.course id

FROM mines courses mc;

Joins

A SELECT query can specify more than one
table as the source of data:
SELECT table1.a1, table1.a2, . . . ,
table2.a1, . . .
FROM table1, table2, . . .
WHERE . . . ;

With no WHERE conditions, this gives the
cross product of the two tables; the resulting re-
lation’s tuples are concatenations of each tuple
from table1 with each tuple from table2.

E.g.,
SELECT mc.instructor, mcf.name FROM

mines courses AS mc, mines cs faculty

AS mcf;

results in tuples like (’Painter-Wakefield,
Christopher’, ’Painter-Wakefield, Christopher’)
and (’Painter-Wakefield, Christopher’, ’Mehta,
Dinesh’) and (’Mehta, Dinesh’, ’Fisher, Wendy’)
etc.

So this is typically not what is desired. There
are two main mechanisms for specifying join con-
ditions to determine which rows from table 1
go with which rows from table 2 (and so forth).
We’ll talk about JOIN clauses later, for now we’ll
focus on what we can do in the WHERE clause.

Thinking conceptually of the result relation
from the above query as a cross-product result,
we can apply the WHERE clause to filter out the
nonsense rows and retain the ones that actually
make sense:
SELECT * FROM mines courses AS mc,

mines cs faculty AS mcf

WHERE mc.instructor = mcf.name;

We can join on multiple conditions, or add ad-
ditional conditions as usual. For instance, if we

2



crn course id section instructor title
10120 CSCI262 B Painter-Wakefield, Christopher DATA STRUCTURES
12693 CSCI262 R02 Painter-Wakefield, Christopher DATA STRUCTURES
12048 CSCI403 A Painter-Wakefield, Christopher DATABASE MANAGEMENT
12623 CSCI406 A Mehta, Dinesh ALGORITHMS
10300 CSCI406 A Mehta, Dinesh ALGORITHMS
12621 CSCI303 A Fisher, Wendy DATA SCIENCE

Figure 1: Some rows from the mines courses table

name office email
Painter-Wakefield, Christopher BB 280I cpainter@mines.edu
Mehta, Dinesh BB 280J dmehta@mines.edu
Rader, Cynthia crader@mines.edu
Fisher, Wendy BB 280D wfisher@mines.edu

Figure 2: Some rows from the mines cs faculty table

crn days building room begin time end time
10120 MW CO 209 13:00:00 13:50:00
12623 MWF BB W210 14:00:00 14:50:00
10300 MWF MZ 235 12:00:00 12:50:00
12693 F MZ 022 13:00:00 13:50:00
12621 TR BB W210 08:00:00 09:15:00
12048 MWF BE 108 11:00:00 11:50:00

Figure 3: Some rows from the mines course meetings table. The data in this table is separate from the
mines courses table because some sections of some courses can have multiple entries due to different meeting
times/locations on different days (e.g., a lab section in a computer classroom).

3



provided instructor names as two fields (last name
and first name) instead of one, we would need two
join conditions ANDed together.

Here’s a query to try:
SELECT course id, instructor, office,

email

FROM mines courses, mines cs faculty

WHERE instructor = name;

Note that this query uses no aliases or fully
specified column names; as long as this is un-
ambiguous, the SQL command processor will ac-
cept it. However, if instead of “name”, we
had used the attribute name “instructor” in the
mines eecs faculty table, then it would make no
sense to have a join with the condition WHERE

instructor = instructor. In that case we
must fully specify the column names (either using
the table names or aliases for the tables). In gen-
eral, even where unambiguous, table aliases and
fully specified column names are often preferable
for making the query more readable and under-
standable.

We can join more than two tables. The
mines courses meetings table contains info
about the days/times/locations where course
sections are held. This table can be joined to
the mines courses table through the common
attribute “crn”. Here’s a query to try:
SELECT mc.instructor, mc.course id,

mcm.days, mcm.building, mcm.room,

mcm.begin time,

mcf.office, mcf.email

FROM mines courses mc,

mines cs faculty mcf,

mines courses meetings mcm

WHERE mc.crn = mcm.crn

AND mcf.name = mc.instructor;

Notes on joins

N.B., in a join, missing entries or NULLs in at-
tributes in the join condition mean that rows
are simply excluded, since NULL never equals
anything (even NULL). For instance, in joining
mines courses with mines cs faculty, you will only
get back information for courses that are taught
by CS faculty (since that is all that is in the ta-
ble), and only for courses whose instructor was
known when the data was created (NULL instruc-
tors cannot match any name). Later we’ll learn
about outer joins, which will let us include rows

that do not match in a join.
Also note that, even though we describe joins

conceptually as forming a cross product which we
then filter down with our join conditions, in actual
practice this is not what happens - it would be
way too expensive to make a cross product with
a billion rows only to select seven of them! When
we study relational algebra we’ll see how queries
can be reordered to make for much more efficient
join queries. (Unless the user actually wants a
cross-product result, of course.)

DISTINCT and ORDER BY

Since the result of a SELECT query is a relation,
which is (in the relational model) a set of tu-
ples, we might reasonably expect our queries to
return no duplicate rows. However, relations in
a relational DBMS actually do not adhere to this
particular part of the model; duplicate rows are
acceptable in tables, and duplicate rows in results
are also normal. E.g., if we do
SELECT instructor FROM mines courses;,
my name will pop up three times (one for each
course section I teach).

To eliminate duplicate tuples, use the DIS-
TINCT keyword:
SELECT DISTINCT instructor

FROM mines courses;

On the other hand, relational DBMSes do fol-
low the relational model in that rows have no
intrinsic ordering. A query can provide results in
any order (even in different orders for the same
query done twice!). To set the order, use an OR-
DER BY clause, where ORDER BY is followed
by the columns on which to sort:
SELECT firstname, lastname, otherstuff

FROM sometable

ORDER BY lastname, firstname;

This will sort alphabetically (assuming text at-
tributes) by lastname and then firstname. If we
want to reverse the order of sorting for any at-
tribute, we can include the DESC keyword:
SELECT earnings, salesperson

FROM sales

ORDER BY earnings DESC;

4


