
CSCI 403: Databases

2 - The Relational Model

High Level

A relation resembles a table of values, or a flat file
of records. A record is a collection of named data
values representing some fact about the world. In
the tabular view of things, each row is a record.
Each column represents a specific field or at-
tribute from every record in the table.

Tables and attributes in the relational model
are named. For example, figure 1 shows a few
rows and columns from the table mines courses.

Definitions & Formalism

Tuples

In the relational model, rows are called tuples,
and relations are simply sets of tuples. A tuple is
an ordered and named collection of values. For
instance, from figure 1, one tuple is
(’Mehta, Dinesh’, ’CSCI406’, ’ALGORITHMS’, 46).

The ordered collection
(’instructor’, ’course id’, ’title’, ’enrollment’)
contains the attribute names for the tuple.

The formal model is based on set theory, and
formally the attributes of a tuple form a set.
However, sets are intrinsically unordered, mean-
ing we’d need to attach names to every value in
every tuple to know what is going on unless we
assume some convention of ordering. So by con-
vention we order the attributes and then apply
the same order to the values in the correspond-
ing tuples.

Each attribute in a tuple has an associated do-
main of values which the values are constrained
to belong to (e.g., strings of length 4, floating
point numbers, dates).

Relation

We denote a relation schema R as
R(A1, A2, . . . , An). The relation schema R has
degree n and attributes A1, A2, . . . , An. Each
attribute has associated domain Di = dom(Ai).
(Notation here is not particularly important, e.g.,
something you will be tested on, but sometimes
it helps in thinking about what is going on.)

A relation state, or simply relation, r(R), is a
set of tuples conforming to the relation schema
R. That is, we can say for any tuple t ∈ r:

t = (v1, v2, . . . , vn) : vi ∈ dom(Ai).

We can additionally denote the value correspond-
ing to the specific attribute Ai as t.Ai or t[Ai].

We can equivalently define a relation as any
subset of the Cartesian product of the domains
of the attributes:

r(R) ⊆ (dom(A1)×dom(A2)×· · ·×dom(An))

Some Notes

The statement that “a relation is a set” implies
that there is no ordering of tuples in a relation.
This is true in practice as well, in that a relational
DBMS may choose to store tuples (rows) of a re-
lation (table) in any order or fashion according to
the design of the DBMS. Formally, two relations
are equivalent if they have the same tuples, even
if the tuples are in different orders.

The same statement also implies that there are
no duplicates in a relation, i.e., that no two tuples
contain the exact same values. In practice, this
restriction is not enforced by relational DBMSs,
so technically relations in a DBMS form a mul-
tiset. The implications of this will be discussed
more when we talk about SELECT queries and
the DISTINCT operator.

In the same vein, formally the attributes of a
relation schema have no order, thus two relations

1

instructor course id title enrollment
Painter-Wakefield, Christopher CSCI262 DATA STRUCTURES 90
Painter-Wakefield, Christopher CSCI403 DATABASE MANAGEMENT 73
Fisher, Wendy CSCI303 DATA SCIENCE 60
Mehta, Dinesh CSCI406 ALGORITHMS 46

Figure 1: Sample rows from the table mines courses (only some columns shown)

that are equivalent except for the ordering of their
attributes are equivalent.

NULL

A few words need be said about NULL at this
point. NULL is a ”state” of a data element that
can exist in a relational database to represent a
variety of concepts. Basically it is the absence of
a value. NULL can mean that the value is un-
known, or missing, or simply irrelevant to a par-
ticular tuple. In the mines courses table there are
many rows with NULL instructor; this likely rep-
resents the fact that when this data was obtained,
not all course instructors had been assigned.

It is very important to note that NULL values
cannot be compared. In particular, two NULL
values are never equal to each other. In queries
(see next lecture), there is a special operator
(IS NULL) for detecting the presence of a NULL
value.

NULL has some other interesting properties;
for instance, the result of arithmetic or string op-
erations involving NULL is NULL. E.g., NULL +

42 results in NULL, ‘Hello’ || NULL results in
NULL, even NULL / 0 yields NULL.

NULL results in a special “3-value logic” for
handling Boolean comparisons when NULL is a
possible state. The result of a Boolean operation
can be “true”, “false”, or “unknown”, where “un-
known” is typically represented by NULL. You can
find the resulting truth table various places, but it
basically comes down to whether or not you can
determine the outcome of the operation knowing
just the non-NULL values. For instance, TRUE

AND NULL yields NULL (“unknown”), since the
evaluation could go either way depending on how
you replace NULL with an actual value. On the
other hand, TRUE OR NULL evaluates to TRUE,
since it doesn’t matter what the other value is in
an OR expression when one is TRUE.

Constraints

In addition to relations as described above, the re-
lational model is also concerned with constraints.
Constraints are simply restrictions on a relation.
There are three flavors of constraints:

1. implicit (model-based)

2. explicit (schema-based)

3. application-based

Implicit constraints are those which are implied
by the model of the world that a schema repre-
sents. For example, the instructor field of the
mines courses table is assumed to contain per-
son’s names. Application-based constraints are
constraints which are not defined in the database,
but which are enforced by the applications which
use the database; these are often known as the
“business rules” of an application, and can be
things like “no employee can have a hire date
that is not on the first of some month”. Such
constraints tend to be more complex to imple-
ment on the DBMS itself, and thus are relegated
to application code.

In terms of the relational model, we are mostly
interested in the explicit constraints. One triv-
ial constraint enforced by the database are the
domain constraints requiring that values in a col-
umn be part of the domain as defined for the
column (attribute) in the relation schema. The
next constraint of interest is called a primary key
constraint, and to explain that we need to define
some more terms.

Keys and Superkeys

A superkey of a relation schema R is some sub-
set of R’s attributes with the property that no
relation of R may contain tuples with exactly
the same values for the attributes in the su-
perkey. For example, figure 2 shows some rows

2

from the mines courses table, this time with some
different attributes shown. If we consider the
set (course id, section, instructor), no two rows
shown (and in fact, in the actual table) have
the same values for all three attributes. Thus
(course id, section, instructor) is a superkey of
mines courses.

Some facts about superkeys that are immedi-
ately obvious; first, if we consider the formal re-
lational model in which duplicate tuples are not
allowed, then every relation schema has at least
one superkey, which is the set of all attributes of
the schema. Second, clearly any superset of a
superkey is also a superkey.

A key is simply a superkey with the property
that no attribute can be removed from the key
without destroying the superkey property. For
example, the set (course id, section, instructor)
is not a key, as we can remove the instructor
attribute and have the superkey (course id, sec-
tion). On the other hand, if we have (course id,
section), clearly we cannot remove either at-
tribute, since both columns have duplicates by
themselves. Therefore (course id, section) is a
key of mines courses. Another way of defining
key is that it is a minimal superkey.

Multiple keys are possible; in the mines courses
table, (crn) is also a key. All keys of a rela-
tion schema are called the candidate keys. Con-
ventionally, we select one key to identify as the
primary key for a relation. The primary key is
a unique identifier for any tuple in the relation.
Typically we prefer smaller sets over larger ones
for the primary key, thus (crn) is a good choice
for the primary key of the mines courses table.

Note that no tuple in a relation can contain
a NULL value for any attribute of a key; since
NULLs cannot be compared, it is impossible to
uniquely identify a record if part or all of its key
may be NULL.

In practice, we can set a primary key constraint
as part of the relation schema in a DBMS. This
constraint is then enforced by the DBMS, requir-
ing uniqueness for the attributes in the primary
key. (Also, the DBMS will not allow NULL val-
ues.) Typically other keys can be enforced as
well by a uniqueness constraint + a not null con-
straint, but the convention is to have only one
primary key identified for a relation. In Post-
greSQL, you can have only one primary key on
a table.

Relational Database

So far, we have been discussing constraints as
applied to a single relation schema. In the larger
picture, a relational database is made up of mul-
tiple tables and associated constraints, and con-
forms to what is called the relational database
schema. The relational DB schema also allows for
constraints that represent relationships between
relation schemas. These are called referential in-
tegrity constraints, or foreign key constraints.

Basically, a foreign key constraint is used to re-
quire that entries in one table have corresponding
entries in another. Formally, a set of attributes is
a foreign key of a relation schema if its values are
either NULL or exist in the specified attributes of
a referenced relation schema (note that the do-
mains must match). For example, suppose there
exists a table named instructors containing name,
office, email, and other information about every
instructor at Mines. Then we can create a for-
eign key constraint relating the mines courses ta-
ble (instructor attribute) to the instructors ta-
ble (name attribute). Each instructor value in
mines courses would then be required to be ei-
ther in the instructors table, or NULL.

As another example, it is possible to have a ref-
erential integrity constraint from a table to itself;
an example from the book is of a table contain-
ing employee information. The primary key of
the employee table is the employee’s SSN, and
the table also contains the SSN of the supervisor
of every employee. Thus there exists a foreign
key constraint on employee (superssn) referenc-
ing employee (ssn), meaning that the supervisor
of any employee must also be an employee. (This
table is also in the csci403 database.)

3

crn course id section instructor title
10120 CSCI262 B Painter-Wakefield, Christopher DATA STRUCTURES
12693 CSCI262 R02 Painter-Wakefield, Christopher DATA STRUCTURES
12048 CSCI403 A Painter-Wakefield, Christopher DATABASE MANAGEMENT
12623 CSCI406 A Mehta, Dinesh ALGORITHMS
10300 CSCI406 A Mehta, Dinesh ALGORITHMS
12621 CSCI303 A Fisher, Wendy DATA SCIENCE

Figure 2: Some more rows from the mines courses tables, this time selecting different attributes

4

