
3/7/2017

1

CSCI 403 DATABASE
MANAGEMENT

12 – Functional Dependencies

This Lecture

Discuss “goodness” of a database design

■ Informal guidelines

■ Objective measures

Informal Guidelines

1. Clear semantics

– Do your relations make sense as independent units?

– Do you have a clear separation of concerns?

– Did you do ER modeling beforehand?

2. Reducing redundancy

– Data should be stored once and only once (excepting foreign keys)

– Redundancy leads to modification anomalies

3. Reducing NULLs

4. Disallowing spurious tuple generation

Example

Instructor Course_id Section Title Office Email

Painter-Wakefield, Christopher CSCI403 A DATABASE MANAGEMENT BB 280I cpainter@mines.edu

Painter-Wakefield, Christopher CSCI262 A DATA STRUCTURES BB 280I cpainter@mines.edu

Painter-Wakefield, Christopher CSCI262 B DATA STRUCTURES BB 280I cpainter@mines.edu

Mehta, Dinesh CSCI406 A ALGORITHMS BB 280J dmehta@mines.edu

Mehta, Dinesh CSCI 561 A THEORY OF COMPUTATION BB 280J dmehta@mines.edu

Hellman, Keith CSCI 101 A INTRO TO COMPUTER SCIENCE BB 310F khellman@mines.edu

Hellman, Keith CSCI 101 B INTRO TO COMPUTER SCIENCE BB 310F khellman@mines.edu

Hellman, Keith CSCI 101 C INTRO TO COMPUTER SCIENCE BB 310F khellman@mines.edu

Hellman, Keith CSCI 274 A INTRO TO LINUX OS BB 310F khellman@mines.edu

Figure 1: One possible relation storing Mines course information:

Redundancy

■ Example has multiple issues of redundancy:

– Multiple sections, with redundant course id and title information

– Instructor office and email repeated many times

■ Cause:

– Two (or more) concepts have been combined into one table

■ Instructor

■ Course info

■ Section info

– These should be (somewhat) independent pieces of data

Modification Anomalies

■ A consequence of bad design

■ Goes hand-in-hand with redundancy issues

■ Three types:

– Insertion

– Update

– Deletion

3/7/2017

2

Insertion Anomaly

Insert a new faculty member in example table – no course info yet

■ What do we put in for course info?

– NULL values?

■ Could violate constraints

■ What happens when we want to add a course for this faculty member?

– Dummy data?

Deletion Anomaly

Inverse of insertion anomaly:

What happens if we delete the last course taught by an instructor?

Similarly, what happens to a faculty member’s courses when they leave/retire?

Update Anomaly

■ When updating redundant data, must remember to update all instances

■ E.g., suppose you are in an application updating course info for CSCI 403

– You notice that CPW’s office info is wrong (e.g., maybe he moved)

– You edit the record to correct his office info

– Now, inconsistent data in different records! Which is correct?

Spurious Tuple Generation

■ Happens when data has been incorrectly factored

– There is no linking data (foreign keys)

– The linking data is incomplete

■ Example:

– Table mines_courses (instructor, course_id, section)

– Table mines_faculty (instructor, course_id, office, email)

– Joining these tables on instructor and course_id will yield spurious

combinations of instructors with sections they do not teach

Functional Dependencies

■ Our primary tool for eliminating redundancy and modification anomalies

■ A kind of constraint between two sets of attributes in a relation schema

■ Definition:

Given a relation schema R and sets of attributes X and Y, then we say a functional

dependency X → Y exists if, whenever tuples t1 and t2 are two tuples from any

relation r(R) such that t1[X] = t2[X], it is also true that t1[Y] = t2[Y].

■ The lingo:

We say X functionally determines Y, or Y is functionally dependent on X.

Functional Dependencies 2

■ In other words:

If it is always true that whenever two tuples agree on attributes X, they also agree

on Y, then X → Y.

■ Example:

If we assert that an instructor is always associated with one office and email, then

{ instructor } → { office, email }

is a functional dependency (FD) on the example table in figure 1.

X Y

3/7/2017

3

Functional Dependencies 3

Note:

FD’s are properties of the world that we impose on the data, not properties of the data.

That is, finding FD’s is a design activity.

The result is a constraint on the data that is allowed in our database.

Example:

It may be that we have a particular set of courses data in which each course_id is associated
with one instructor. Then, for that data, it is true that whenever a tuple agrees on course_id,
it also agrees on instructor. However, unless this is required to be true for any set of data we
can put in our database, we cannot say { course_id } → { instructor}.

Types of Functional Dependency

■ Trivial FD’s

– Trivially, X → X

– More generally, if Y ⊆ X, then X → Y

■ Non-trivial FD’s

– X → Y

– Y ⊈ X

■ Completely non-trivial FDs

– X → Y

– X ∩ Y = ∅ (No overlap between X and Y)

Non-Trivial FDs

■ We are primarily interested in non-trivial and completely non-trivial FD’s.

■ In our figure 1 example, we might identify the following completely non-trivial FD’s:

– instructor → office

– instructor → email

– { course_id, section } → instructor

– course_id → title

■ Can you identify others?

Note the abuse of set notation here.

I just find it more readable.

Functional Dependencies and
Superkeys

■ FD’s can be viewed as a generalization of the notion of a superkey

■ Recall a superkey is a set of attributes which will contain a unique subset of values

for any tuple in a relation.

■ Thus, if X is a superkey of R, X → R.

■ Alternately, if X → Y and X ∩ Y = R, then X is a superkey of R.

Inference Rules

Allow us to infer additional FD’s from an existing set of FD’s

■ Splitting rule:

If A → {B1, B2} then A → B1 and A → B2

■ Combining rule:

If A → B and A → C then A → {B, C}

■ Transitive rule:

If A → B and B → C then A → C

Additional rules can be derived and can be found in your textbook.

More set notation abuse here.

A, B, C, etc. are all sets. {B, C}

is the union of sets B and C.

Closures

Definition:

Given some set of functional dependencies F on a relation schema R, and some

subset of attributes A, then the set {Bi : A → Bi } is called the closure of A and is

denoted A+.

Closures are useful in:

■ Normalization

■ Finding all superkeys of a relation schema

3/7/2017

4

Computing Closure

Algorithm:

Given set F of functional dependencies, and some set of attributes A, compute A+:

Start with S = A. Trivially, A → S.

Repeat until no change:

if there exists an FD X → Y in F such that X ⊂ S,

then let S = S ∪ Y

A+ = S

This step expands S while

maintaining the invariant A → S.

The step follows from the three

inference rules.

Finding All Superkeys

■ In short:

– Generate the power set of R – all subsets of attributes

– For each subset, compute the closure

– If the closure = R, then the subset is a superkey of R

■ This algorithm is mostly of academic interest to us, but could be used in automated

software to build a normalized database, when the functional dependencies are

inputted.

Next Time

■ Normal forms & Boyce-Code normal form

■ Decomposition algorithm

