
CSCI 403: Databases

11 - The Relational Algebra

Relational Model Redux

We return to the theory of relational databases as
developed by E.F.Codd in his 1970 paper. Recall
that a relation is defined as a set of tuples, where
a tuple is a set of values associated with named
attributes. The relational algebra considers the
useful operations that can be applied to relations
and the resulting algebra of relations. These op-
erations all have realizations in the SQL language
(which came about substantially later than the al-
gebra), although as we’ve already seen, SQL does
not adhere tightly to the relational model (e.g.,
multiset relations).

There is also a relational calculus, which we will
not cover in this course, but which is discussed
in your textbook. The relational calculus forms
part of the foundation of the SQL language.

Unary Operations

The relational algebra has two unary operations,
projection and selection, which give rise to the
SELECT and WHERE clauses (respectively) as
well as a renaming operation which gives rise to
the renaming and aliasing facilities in SQL (i.e.,
the AS keyword). There is notation associated
with each of these operations, which lets us com-
pactly write expressions in the algebra.

Selection

The Select operation chooses a subset of tuples
from a relation according to a condition on the at-
tributes of the tuples (think WHERE clause). In
effect, the Select operation partitions the tuples
into two sets according to whether they satisfy
the condition, discarding the set of tuples which
do not satisfy the condition.

Letting R represent some relation, the Select

operation is notated as

σcondition(R).

R can be a variable, as in

R = mines courses,

or it can be the bare name of a relation, or it can
be an expression in the algebra which results in a
relation.

For example,

σcourse id= ′CSCI403 ′(mines courses)

applies the selection operation to the
mines courses relation to obtain only those
tuples where the attribute course id is equal to
the constant ‘CSCI403’. Note that the result
here is another relation, that is, a set of tuples
which retain the attribute names from the
original relation.

As with the WHERE clause of a SQL query, we
can make compound conditions using the usual
AND, OR, and NOT operations. A common ex-
tension is to also allow type-appropriate functions
on attributes as well, such as a substring opera-
tion:

σsubstring(course id from 1 for 4)>=300(mines courses)

selects tuples from mines courses for courses at
the 300 level or higher.

The selection operation is unary (applies to a
single relation) and the condition applies to single
tuples; no aggregate functions here!

Properties of the Select operator

• The degree of the relation (# of attributes)
resulting is the same as the degree of the of
the original relation.

1

• The number of tuples in the resulting rela-
tion is always less than or equal to the num-
ber in the original. The fraction of tuples
selected is referred to as the selectivity of
the selection condition.

• Selection is commutative:

σcond1(σcond2(R)) = σcond2(σcond1(R))

• A sequence of Select operations can always
be converted into a single Select operation
with the conjunction (AND) of all the Select
conditions:

σcond1(σcond2(R)) = σcond1ANDcond2(R).

Projection

Whereas the Select operation partitions relations
horizontally (by rows), the Project operation par-
titions relations vertically (by attributes). The
Project operation is notated as

πattr1,attr2,...(R),

where attr1, attr2, ... specifies the attributes of
R to be retained in the resulting relation. Note
that we can repeat attributes, so the resulting
relation can have higher degree than the original.

For example:

πinstructor,course id(mines courses)

would result in a relation with only unique
tuples of instructor and course id from the
mines courses relation.

Note that the Project operator functions much
like the SELECT part of a SQL query (while
the Select operator functions like the WHERE
clause).

Properties of the Project operator

• The number of tuples in the resulting rela-
tion is always <= the number of tuples in
the original. It can be less than due to the
elimination of duplicates (if the selected at-
tributes do not form a superkey of the rela-
tion, for instance).

• The projection operation is not commuta-
tive, rather

π<list1>(π<list2>(R)) = π<list1>,

assuming list1 only contains attributes also
found in list2 (otherwise the expression is
malformed).

Renaming

Formally, the renaming operator lets us rename
relations, attributes, or both as a unary operation
- similar to using the AS keyword in SQL. The
general form is

ρS(B1,B2,...)(R)

where S is the new name of the relation, and B1,
B2, ... are the new names of R’s attributes. S or
the attribute list are optional. If the attribute list
is included, it must match in degree the number
of attributes in R, and the attributes will be re-
named in the same order as the usual ordering of
the attributes.

Sequences of Operations

All of the above unary operations can be nested,
e.g.,

ρ(name,course id)(πinstructor,course id(σdepartment=‘EECS ′ (mines courses))),

which corresponds to (is not necessarily equiva-
lent to) the SQL query
SELECT instructor AS name, course id

FROM mines courses

WHERE department = ‘EECS’;

Alternately, we can do a sequence of opera-
tions, giving a name to each relation (think vari-
ables) as we go:

R1 = σdepartment=‘EECS ′(mines courses)

R2 = πinstructor,course id(R1)

R3 = ρ(name,course id)(R2)

Set Operations

Union, Intersection, and Set Difference (or Mi-
nus) can be applied as binary operations when
both operands are relations with the same num-
ber and types of attributes. These work the same
as UNION, INTERSECTION, and EXCEPT in
SQL.

Notation:
Union: A ∪ B
Intersection: A ∩ B
Difference: A− B

2

Properties of Set Operations

• Union and Intersection are both commuta-
tive:

A ∪ B = B ∪A
A ∩ B = B ∩A

• Union and Intersection are both associative:

A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C

• Set difference is not commutative or asso-
ciative!

• Intersection can be expressed in terms of Dif-
ference (and thus is not technically necessary
for completeness):

A ∩ B = A− (A− B)

Cartesian Product and Joins

The Cartesian (cross) product:

A× B

has the same meaning in relational algebra as a
cross-product join in SQL: the resulting relation
has each tuple from A paired with every tuple
from B. The attributes of the new relation are the
concatenation of attributes from A and B. Thus
if A has m attribute and B has n attributes, then
A× B has m + n attributes. The size of A× B
is |A|× |B|.

As in SQL, this operation has little utility on
its own. Typically it is paired in relational algebra
with a subsequent Select operation to eliminate
irrelevant pairings of tuples. Since this is such
a common pattern, another operation, Join, was
created. The notation for the binary operation
Join is:

A oncondition B

which equates to

σcondition(A× B)

Note: there are some variations in notation be-
tween the book and other sources I’ve looked at
concerning joins and related operations. I will

try to follow the book’s notation where there are
differences.

For example, we could perform the join

mines courses oninstructor=name mines eecs faculty.

When we have A oncond B and the join condi-
tion is of the general form
cond1 AND cond2 AND . . . ,
and condn is of the form AiθBj where Ai ∈ A
and Bj ∈ B and θ is one of the usual comparison
operators (equals, less than, etc.), then the join
is called a “theta-join”.

When θ is the equality operation, the join is
called an “equijoin”. The nature of this join
is such that the resulting relation will agree
completely on every value between the pairs
of columns participating in the join expression.
Therefore, it is usually desirable to project away
one of the duplicates.

In the frequent case in which the paired at-
tributes have the same name in both relations,
we can apply yet another special join: the “natu-
ral join”. In the book, the notation for the natural
join is

A ∗ B
but other sources use on with no conditions to
mean a natural join.

E.g.,

mines courses ∗ mines courses meetings

would join on the equality of the CRN attribute.
If the paired attributes do not have the same

name, then a renaming must be done before ap-
plying the natural join, e.g.:

mines courses ∗ ρname=instructor(mines eecs faculty).

Note that the natural join will equate all at-
tributes of the same name in the two relations.
Terminology: the join selectivity of a condition is
the expected size of the join divided by the max
size of the cross product.

Completeness

It can be demonstrated that the set
{σ, π,∪, ρ,−,×} forms a complete set of
operators for the relational algebra, at least as
originally formulated. That is, all other relational
algebra operations can be expressed as some
combination of operations using the above set.

3

Other Operations and Exten-
sions

Division (÷) - this is a truly odd operator, which
is difficult to explain the utility of, and which has
no equivalent in SQL. Please read the book for
more info. (Division is equivalent to a sequence
of basic relational algebra operations.)

Aggregates/grouping: this is not expressible
using the base relational algebra, but obviously
has importance for SQL databases. The notation
for doing aggregates and grouping is

< grouping attributes > I<function list>(R)

Generalized projection: projection is generally
extended to provide for functions on attributes,
e.g.

πF1(A1),F2(A2),...(R)

Recursive or transitive closure: no real nota-
tion. This is some hardcore relational juju that
actually does have a SQL equivalent, and may be
useful for certain kinds of self-referential querying
(e.g., getting a hierarchical company view from
supervisor-employee relationships).

Outer joins: no LATEXsymbols found for these!
Look in book - they look like the join symbol with
extensions.

4

