
CSCI 403: Databases

1 - Introductory Material

Definitions

What is data/what are properties of data?
Your answers in class:

• information

• meaningful

• organized

• numbers, strings, etc.

What is a database/what are some defining
characteristics of a DBMS?

Your answers in class:

• organized data

• easy retrieval

• modifiable

• relate data to other data

• extract meaning from data

Properties of the Modern
Database

Self-describing

A DBMS allows us to define a database struc-
ture and store this definition together with the
data. The data description is often called “meta-
data”. In DBMS terminology, the meta-data is
stored in the database catalog and records de-
tails of all object types in the database (using
object here loosely, not in the OOP sense). Key
advantage here is that the database software is
general-purpose and will work equally well for one
application as for another.

Consider file-based system instead. Pre-
xml/JSON, or even pre .ini file, no standard way

to store data specific to an application; would of-
ten store data using the byte layout of the structs
in the programming language. Each program
would process its files and no others.

Program-data separation

Another benefit of self-description is that pro-
grams and the structure of data can be changed
independently. In the file example, a change to
the structure immediately requires both a change
to program code and a rewrite of all data files
from the old format to the new. With a DBMS,
you can typically modify the database struc-
ture (e.g., by adding a field or a relationship)
without recoding existing applications (obviously
some changes will break software - deleting record
types/relationships, some modifications). Be-
yond that, software can be written to recognize
and work with modified structures by reading the
catalog (meta-data), so for instance, adding a
field can actually enhance result in a general-
purpose query program.

Data abstraction

Structure of data storage on storage medium
completely abstracted away - application pro-
grammer does not need to know!!!

Network multiuser access

A key feature from early days of DBMS is the abil-
ity to access database via multiple programs (or
by multiple users) at the “same” time. This re-
quires transaction control to ensure that updates
from one user are not inconsistent with updates
from another user (e.g., when one user changes
data, the modification is to a current view of the
data rather than an out-of-date view). This tends

1



to go together with network access (since without
it, you don’t tend to have multiple users).

Client-server architecture

Client-server architecture arises organically from
all of the above concerns. Since the database
is self-describing and independent of application
programs, it makes sense to build software de-
voted solely to providing database services. Add
in network multi-user access, it is natural for
applications to exist as separate client software,
making a limited set of calls to execute DB func-
tions on the server.

Early Models

Pre-1960, data was stored on sequential access
media (tape, punch cards, punched tape). Data
storage was typically application specific. No
standard, general purpose system for storing, in-
dexing, retreiving data. First general purpose
DBMSes date after introduction of direct access
(e.g, disk) storage. Term “data-base” dates to
1962 (according to OED via Wikipedia).

Charles Bachman, GE 1964. IDS (Integrated
Data Store) Bachman (1924 - 2017) is the 1973
Turing Award winner. IDS is the original network
model database system, which was later stan-
dardized by CODASYL.

CODASYL stands for “Conference/Committee
on Data Systems Languages”, a consortium
founded in 1959 to develop a standard pro-
gramming language. Two notable achievements:
COBOL standard, and network (aka CODASYL)
database standard. In 1965 formed List Process-
ing Task Force to develop extensions to COBOL
for managing collections of records (with specific
reference to IDS network model). In 1967 was
renamed to “Data Base Task Group” (DTBG).
1969 - first network model standard. Defines
DDL and DML (extensions to COBOL). Move-
ment towards language independence in 1971. A
number of vendors created DBMSes following the
CODASYL standard, at least one of which is still
sold today.

Bachman also developed (1965) an early trans-
action control system (allowing for multiuser net-
work access).

Network model: flexible & powerful graph-
based storage of records. Essentially composed
of “records” and “sets”. Records organized into
named types defining the attributes for a par-
ticular record name. Set types define relation-
ships between records. Specifically, a set type
defines an “owner-member” relationship between
two record types. An owner record is associated
by a set with 0 or more member records, which
are all of the same type. All records assigned
a unique key value (tied to storage in system,
allows for essentially direct access to record).
Navigation between owner and members was via
record id linkage (circular list anchored by owner).
Power and flexibility in the system due to fact
that records could participate in multiple sets (of
multiple types), allowing for complex graph struc-
tures.

IBM 1966-68 IMS (Information Management
System), for the Apollo space program (bill of
materials tracking for Saturn V rocket). The first
hierarchical model database system. IMS still
sold today. In hierarchical model, records form
a tree structure; each record can have at most
one parent, but multiple child records. (Think of
file systems.)

Both IDS and IMS were/are examples of nav-
igational database systems. Access to a record
is primarily predicated on knowing the record’s
unique key, and data retrieval follows linkages
(like pointers) from parent to child (or to sibling
in the case of network model).

The Relational Model

E. F. Codd (1923 - 2003). Employed by IBM, in
1970 publishes “A Relational Model of Data for
Large Shared Data Banks”. Internal pressure at
IBM was to preserve revenue stream from IMS.
IBM eventually developed a product based on
Codd’s ideas, called System R. System R project
developed SQL (originally as SEQUEL). System
R first sold in 1977. Codd wins 1981 Turing
award for his work.

Oracle (initially developed 1977-79) is released
by Larry Ellison’s Relational Software in 1979.
World domination soon follows.

INGRES - U. Berkeley project begun in 1973 by
Michael Stonebraker & Eugene Wong after read-
ing technical papers from the System R project.

2



Source code available early on (first open-source
DB?) Ingres initially competed with Oracle, but
lost partly due to having own query language
(QUEL). Project ended in 1985. Some of Ingres
developers went on to develop commercial DBs,
notably Sybase (which is also progenitor of MS
SQL Server).

Postgres - Michael Stonebraker starts project
at Berkeley in 1985 to address shortcomings of
relational DBMSes of time, particularly inability
to define new data types. (Still didn’t support
SQL until 1994.) Goes fully open source in 1994.

Michael Stonebraker is 2014 Turing Award win-
ner.

Features of Relational Model

We will spend a lot of time on this in future
lectures, but basically relational databases move
away from pointer-based navigational approach
to a more flexible approach based on set theory.
Different views of the data can be dynamically
created based on relational joins - these do not
have to be designed into the database structure
from the start. Initial versions were slow com-
pared to navigational DBMSes, but rapidly im-
proved with better indexing schemes, etc., to be-
come dominant. The relational DBMSes dramat-
ically improved data abstraction and program-
data separation.

New (Old) Ideas

Flirtation in 1990s with OODBMSes (with rise
of OOP). Note that OODB reverts to naviga-
tional concepts! OODB concepts were quickly
subsumed into mainstream relational products
such as Oracle to make the ORDBMS. Relational
DBMSes have continued to expand into new data
types (e.g., XML, BLOB, GIS) and gain new ca-
pabilities. However, the rise of the internet has
led to a perceived need for new paradigms.

NoSQL (Not only SQL) databases are not well-
defined, but exist in part due to the very large,
very rapid, quickly changing data streams created
by Internet usage and commerce. Some charac-
teristics:

• Scalability - distributed over many nodes

• Flexible schema - e.g., document databases
using JSON - good match to agile develop-
ment processes - not tied to a fixed structure

• Fault tolerance - survival of single node
downtimes

Some of the “new” databases are navigational
in nature - graph databases share some similari-
ties with network databases, for instance.

Note that all of these features are also being
addressed by Oracle, Postgres in various ways, so
whether NoSQL will remain a separate movement
is yet to be determined.

Future - Rise of “New-SQL” databases?

3


