
Toilers #3 – iNSpect Visualization Tool
2008 Field Session Project

Final Report

June 19, 2008
Dan Slattery

Matt Curtice

John-Carl Guthrie

Alan Rowe

Table of Contents

Abstract

Introduction

Requirements and Specifications

Design / Solution Approach

Overview

MVC

Singleton

Parsers

Waf

Background Images

Threading

Timeline

Summarization

Implementation Details and Results

Overview

MVC

Singleton

Parsers

Waf

Background Images

Threading

Timeline

Scope and/or Project Progression

Conclusion

Appendix

Glossary

References

Abstract

An NS-2, becoming upgraded to NS-3, network simulator visualization tool named iNSpect is widely known and used by over 420 researchers in 51 different countries to visualize wireless networks, mobile ad-hoc, and soon wired networks. iNSpect, currently on version 3.5 was originally developed by the Toilers Research Group at the Colorado School of Mines which includes Tracy Camp, Stuart Kurkowski, Mike Colagrosso, Neil (Tuli) Mushell, Matthew Gimlin, Neal Erickson, and Jeff Boleng. In April 2005, iNSpect was upgraded to handle wireless networks by Fatih Gey and Peter Eginger from the Department Security Technology at the Fraunhofer Institute for Computer Graphics Research, a clean and logical class structure was prepared so it would be easier to extend the visualization tool.
The Toilers group decided in November 2007 to update iNSpect to handle wired and wireless visualizations while working in the new version NS-3 in hopes that it would be included with NS-3 distributions released in the future. To do this, the group has added simulation support for wired networks along with the wireless networks. redesigned the internal model to handle these simulations, and added functionality to turn on and off nodes during simulation. To aid the Toilers group in updating iNSpect, the team's project over the summer is to make iNSpect more maintainable and more functional, allowing the Toilers group to manage the program more efficiently. This involves completing the Model-View-Controller (MVC) architecture, removing the Singleton model, using the Waf build system and adding mobility and NS-3 parsers. It also involves adding background images back into the program (to aid a graduate student's research by adapting the program), making threaded file readers, and continuing to add fail-fast functionality (preventing any assumptions).

The team will be working mostly in the Alamode Lab at Colorado School of Mines, using Eclipse to edit and learn the iNSpect source files which are in C/C++. The team will also use knowledge in Python and UNIX shell scripts/commands in a UNIX environment.

Introduction

The group’s assignment for field session is restructuring and updating the Toilers Research Group’s iNSpect Visualization Tool. iNSpect is a program currently used in over 51 countries by over 420 researchers for visualizing wireless networks or mobile ad-hoc. In November of 2007, the Toilers Group decided to update iNSpect so that it may handle both wired and wireless network visualization and to work on adding the program to the next NS-3 (network simulator) version distribution. The team will be working to achieve this goal by updating the latest version of iNSpect (which currently supports NS-2 and already has the internal model to handle wired and wireless simulations). To do this, the team must start by restructuring iNSpect into the Model-View-Control(MVC) program structure per request of the client, adding a new compiling system named Waf(which later was worked on but removed as a requirement due to compatibility issues of Waf’s current working version) and removing the singleton data model from inside iNSpects programming. The team will also re-add background images to the program, thread the file-readers for iNSpect, and add several new features for the NS-3 upgrade such as mobility, parsers, threading, and more fail-fast functionality.

To discuss in-depth the team’s field session project over the course of six weeks, the report is divided into sections. The first section is Requirements and Specifications where each requirement assigned to the team to be completed by the end of the six weeks will be discussed in general detail. This will provide an overview of the project and what the team has to do, as well as some of the minor requests the team must adhere to while working on iNSpect. The next section of the report is the Design / Solution Approach. This section will dive into more detail about each requirement for the project as well the strategy the team will take to accomplish the requirements in a timely and efficient manner so that the team may have the extra time near the end of the six weeks to work on and complete some of the extra optional tasks provided by the client. At this point a referenced expected time line at week 3 will be provided. The section following will be the Implementation Details and Results. This section will go into the highest detail of each required task. Each subsection in this portion of the report will provide the end result of each requirement and what work was done to achieve completion. Also in this section will be a reference to the accurate time line for the entire project. A subsection will be included discussing any extra tasks completed by the team before the end of the project.

After the report’s conclusion section, an appendices section can be found providing diagrams to help in the understanding of items discussed in the report. A glossary section will be provided so each term used in this report can be quickly referenced maintaining the readability and understanding in the report. References to sources and developer pages used by the team to develop the final product of iNSpect for field session can be found at the end of the report.

Requirements and Specifications

The current state of the iNSpect code is a partial transition from the original code base to a Model-View-Controller (MVC) architecture. This means that the entire code is completely separated into three parts which then work together. The first part is the Model, which basically holds all of the data and performs the calculations, formatted in such a way as to be easily accessible by the other parts. The View, as the name suggests, is simply the displaying to the screen all information considered valuable to the user in an easily understandable way. The last part, the Controller, is the decision making part, in which the user is asked to make decisions which in turn affects the other two parts. The benefits of such architecture are its flexibility and extensibility. Future programmers may make changes/upgrades to one aspect of the code with little to no effect on the other parts. It also makes the code easier to read, in that a developer knows exactly where to go in order to find where changes need to be made as well as what other things it might effect. Lastly, it makes debugging much less painful, as specific errors are much more limited in locations where they might occur. So while this upgrade of architecture might not affect users of the program in any way, it will greatly help future developers maintain iNSpect once we are done.

Compiling iNSpect from the source code is currently a roundabout task. A configuration shell script is run to generate a makefile with the proper library paths and other system settings. That makefile is then run to compile iNSpect. While this approach is sufficient for development at the present time, it is not very portable. Previous work has focused on ensuring that compiling will work properly on a handful of Linux distributions used by developers, such as Ubuntu Hardy Heron. While it may be possible to compile on other systems, it is not explicitly supported. To increase portability it was decided to incorporate the Waf build system into the project. Waf is a building tool designed for projects like iNSpect, and consists of a series of python scripts distributed through the source directories. These scripts point to each of the directories and files needed to compile iNSpect and define what parts of the project they belong to. Most of these scripts are very short and readable. A handful of comment lines containing instructions would be sufficient to allow developers unfamiliar with either Waf of python to edit the scripts to add or remove source files from the build. Waf also incorporates system detection options, which it is hoped will lead to successful compilation on other Linux distributions and Windows with no additional effort needed by the user. Although this task was eventually removed from requirements, it is still a task considered by the team as requiring time and work to be spent.

A cleanup task given to the team is to remove the partially-implemented singleton data model present. Originally adopted to increase performance, it is at present inconsistently used even within the same section of code. In the interests of program stability and simplicity, all uses of a singleton data model are to be removed and replaced with normal references. It is expected that some amount of this task will be completed during the restructuring into MVC, and as such will not be pursued on its own until MVC is fully implemented.

While the loading time of iNSpect is not excessive, due to the structure of the program the entire data file to be displayed must be read and loaded into the program data objects before anything is displayed to the user. For large data sets, iNSpect could appear to have frozen while loading this data. To increase the loading speed, the team has been asked to make all file readers in the program threaded. This will both increase the speed of reading data from the accessed file and allow the display of simulation data before the loading process is complete. This threading will greatly increase the loading speed of iNSpect by simultaneously loading multiple files at a time. Of course while helping the large-sized data loading much quicker, small-sized data sets as well as our sample data sets will hopefully result in iNSpect loading almost instantly.

As a part of all work on iNSpect, the team has been asked to adhere to a standard code format with regard to naming, tabbing, line breaks, and commenting in order to make the source code of iNSpect uniformly readable. While most of the existing code is properly formatted and commented it has been suggested that we review the internal documentation both as a learning exercise and to correct any mistakes present. We have also been asked to update the Toilers Twiki page for iNSpect throughout the project, so that other developers are aware of our progress.

Other features the team has been asked to include into the program include adding mobility parsers, adding background images into the display, adding more fail-fast functionality, and completing XXX comments. Adding NS-3 parsers is another task the team is expected to put time and work on, however it remains a task which is not a minimum requirement, but asked to complete if time permits. Adding mobility and NS-3 parsers is more of an update to the current design of iNSpect to conform to the new NS-3 network simulation that has currently been developed. Background images have been asked to be implemented into the program even though in a previous update of iNSpect, it was taken out. From certain requests by users and clients, iNSpect decided to put images back into the program so that these users/clients can have a background image similar to the simulation they are currently running. The Toilers Group has also asked the team to continue to add fail-fast functionality to the program to polish the code and make it completely error free. Fail-fast functionality refers to how iNSpect should make no assumptions anywhere in its design. The Toilers Research Group has designed the program to where if any assumption is attempted to be made, the program should fail immediately, display an error, and quit. The group’s job is to keep this procedure for any code they add as well as add the fail-fast functionality to code that it has not already been applied to. XXX comments are comments throughout iNSpect's code which ask developers to make a change to improve the code. These XXX comments have been assigned to the team to be tackled during the time worked on iNSpect.

In effort to get the most work done during the team's time on the project, additional tasks have become optional tasks to complete. Since these tasks are optional and not required for the project, they are asked to be worked on once other tasks have been completed. However part of these tasks are problems which will likely be encountered while completing the assigned required tasks. These tasks include Data Access Objects (DAOs) to use notify rather than polling for readiness, making sure all nodes referenced in the DAO system are valid in the ensures, rewrite Data Events, all TODO/XXX/etc comments remaining in the code, and fixing a problem with the last node in the simulation having the wrong node number. All of these tasks are tasks intended to improve performance of the program and the team will receive more direction and information on each tasks if they are reached.

With so much new understanding the team has acquired, they are ready to update iNSpect. To do this however, the team must make a few modifications to the code’s structure. Additions to the program (such as threading, fail-fast functionality, parsers, and mobility) must also be made. Although some of the restructuring and additions requested by the Toilers Research Group can be very extensive and difficult as documented, the team is ready to start making these major changes to upgrade iNSpect to become added to the NS-3 release.

Design / Solution Approach

Overview:

The iNSpect project for field session 2008 the team has been assigned is best viewed as a series of related tasks rather than a single project to be completed. These tasks are to a certain degree independent with several of them not needing to be done in any order relative to each other. As such we have split these tasks between the team members best suitable for each job. We believe working on these tasks in parallel as much as possible will provide the team more time to complete all the tasks assigned. The following sections will describe the strategy for completing of each task.

Model-View-Controller (MVC) Architecture:

The largest task in the iNSpect project is the conversion of the existing code to Model-View-Controller format. The format for the MVC architecture the code should follow once completed is shown in Figure 1 found in Appendix A. The goal of this restructuring is to aid the readability and maintainability of the code, both for later developers of iNSpect and for developers who wish to adapt iNSpect to other uses. In order to accomplish this, we will be going through the code file-by-file and evaluate each variable/function and determine which part of the architecture they belong in. After moving these parts to the appropriate classes, the program must be debugged to fix all of errors introduced by the changes. Once the program is buildable again, it is tested for workability. Once all tests have been satisfactorily completed, we will move on to the next file until the entire program is complete.

Singleton Model:
Some sections of the existing iNSpect code use temporary copies of data objects for their operations instead of manipulating the main data object. It was originally intended that all iNSpect functions operate in this manner, but was never completely implemented. The team believes the best course of action is to remove all remaining singleton data objects for the sake of program stability and readability. Most instances of singleton data copies are easily found, as they use ‘singleton’ as part of their variable names. All references to these data objects will be eliminated and replaced with references to the main data objects. It has been suggested by our client that removing singleton objects could be most easily accomplished in conjunction with the changes to the MVC architecture, as some of the work with MVC will require the removal of singleton data copies in order to function properly. Therefore this task has been to a degree merged with the MVC task. However, it is likely that some code sections that are not modified by MVC will contain singleton data objects. After the completion of MVC, a check of the iNSpect code for any remaining singleton objects will be conducted, and anything found will then be removed. Due to this relation, the Singleton Model task has a partial dependency on the MVC task.

Parsers:

Parsers are the section of the iNSpect that analyzes a selected input file and constructs the database that will be used for the visualization. The version of iNSpect the team began working on contained parsers for the NS-2 wired and wireless trace files. However, it does not currently support Mobility trace files created from the Real Mobility Generator simulator or from the currently-in-development NS-3. The team has been requested to write two new parsers for iNSpect: one that recognizes Mobility files and another that recognizes the newly released NS-3 simulator files. The mobility parser looks to be a quick completion simply by mimicking the design/implementation of already perfected parsers, but changing it to work with mobility file input. Unfortunately, the NS-3 parser will not be as simple since there is no sample input file for the team to work with. Instead it has been requested that, should we have enough time, we look through the NS-3 code ourselves and define a file output type based on our understanding of code. As the team has not had access to the NS-3 code, it is difficult to define exactly how this process will work, or estimate a time frame for completion. Over the course of the project, it was suggested that our liaison, Jeremy Norman, would define for us a file format for NS-3 that he would then write a scraper to create for the team. A parser could then be written for that file format. However near the ending weeks of the session after some work has been done, the team was informed that NS-3 is no longer needed to be completed as a requirement. Also, an added requirement near the end of the field session was to develop a PCAP parser. PCAP is a well-defined trace format for capturing network traffic that can be easily read. This was implemented in a previous revision, and simply needs to be reimplemented.

Waf Build System:
The Waf build system is a tool used to compile projects. It is not a compiler, but instead assists the compiler by identifying all needed source files, libraries, and system settings that are needed to compile an executable for the current system. Waf was chosen because it is being used in the related NS-3 project, and it tends to compile much faster than other builders. Waf is itself a Python script which can be shipped with the source code of a project. In the top directory and all subdirectories containing files to be built must have a file named ‘wscript’ with no extension. These files contain the project-specific compilation instructions. Work which will be made on the Waf system consists mainly of creating the wscript files needed followed by testing them until a working executable is built. Issues that cannot be resolved by reading the existing documentation are referred to the Waf-users mailing list, the Waf google code page, or contact through the Waf’s IRC channel. It was decided to first ensure that Waf will build iNSpect as-is on the Ubuntu Linux machines in the Alamode Lab, as that is where the current program makefiles will compile, before attempting to configure Waf on other systems. Due to the lack of dependable documentation on how Waf works as well as no demos included with Waf are similar to iNSpect, the strategy made to complete the Waf task is trial and error, which takes time.
Background Images:
One minor task the team has been asked to do is add background images back into the code. The code came set up for having a white background when the simulation was being run. To update this, a small amount of code was added to give iNSpect the ability to display the image rather than the plain white background. This code could be partially developed from the old code which allowed iNSpect to have background images before. Instead of the white background remaining default, there will be a gradient image.
Threading:
The goal of threading is to decrease the load time on program start. This is to be done by making a separate thread to read each file for the visualization, and to allow the display to begin before file reading is complete. The glib and gtk libraries will be used as the threading libraries. A ScopedLock class will be written to safely handle mutexes within the program. The main tasks needed to be completed are proper creation of the threads and having proper mutex on the program's shared variables. This will take some amount of testing after the changes have been made to verify that threading works properly under all conditions.
Timeline:
The team has prepared an initial time-line for all of the above tasks. This shows each task with the corresponding expected completion date. This time-line can found in Appendix B marked as Table 1. Near the completion of field session a new time-line will be developed and provided. This one however will display the actual completion date for each task that has been provided.

Summarization:

After organizing and planning out how each task must be accomplished the team has found it easier to work to achieve their final product which they have been asked to produce. Over the next ongoing weeks, the team plans to complete the tasks that have been stated in a timely manner. We believe by splitting our tasks up in an organized and task-related fashion, all the tasks required by the team’s client will be completed on time. If time permits, the extra and optional tasks requested by the client may be split up amongst the team in hopes of completion.

Implementation Details and Results

Model-View-Controller (MVC) Architecture:
The MVC architecture is a way of structuring a project such that each class has a clearly defined purpose and method of interaction with each other. Not only does this help the original developer to organize his ideas better, but it provides an easy to understand structure for future developers who need to be able to quickly understand how the code works. For iNSpect, the MVC architecture works as follows:

Model – Handles the reading in and storage of input data from the files. Also performs calculations on the data provided, and reports these data and calculations to the Controller and View

· vizModel – The main Model class, performing all major calculations and calling of the other model objects.

· DataAccessObject – Handles file reading and other input for the simulation. Calls file interpreters to read a line and then parses the information in a way that is usable by the simulation.

· NodeManager – Handles the storage and functionality of nodes. Stores all of the nodes data, and calculates the movement/connections of the nodes.

View – Displays all output to the screen. This includes the program’s three main simulation windows, vizViewControl, vizViewSimulation, and vizViewNodeStat

· vizView – The main View class, creating and maintaining the three program windows.

· vizViewControl – Contains the user interface for controlling the simulation. Provides all of the buttons for There are controls for starting/stopping the simulation, adjusting the speed, stepping through it, and recording the simulation. All user input is through this Window, with the actual functionality of these buttons being controlled by the vizControl class.

· vizViewSimulation – Displays the actual simulation as defined by the input files. Shows wireless/wired nodes as multicolored orbs, with lines showing connectivity going between them. It is possible to click on a node, which effectively selects the node for display in vizViewNodeStat.

· vizViewNodeStat – Displays the information of a single, selected node, including current location(x/y position), current motion (dx/dy), and which nodes it is currently connected to.

Controller – Creates all of the other classes, and makes all decisions for the program. These decisions are made either through hard coded choices, or by user input.

· Controller – The main Controller class. Calls the constructors for View and Model, and holds all decision making data. Routes all user input to the proper classes.

· vizControl – Handles the commands for the vizViewControl window. Determines what action to take based on what control object is called.

When we started working on iNSpect, it already had the base classes set up for MVC. However, since it was still in the process of being converted, there were a few classes that had a mixture of attributes and functions which still needed to be split up. Also, none of the classes had been separated into their proper directories but were mixed up in the general “src” folder. In order to make the program more easily accessible for future developers, each of these files needed to be placed in their respective MVC Folders, and then into even more specific folders if necessary. These tasks were the major focus of this part of the project.

The class with by far the most changes was vizModel, which had about 20-25 variables and functions which needed to be relocated into other classes. The great majority of these were moved into the controller class. These were all variables related the simulation state and time, as well as the recording state and time. The simulation is run through a loop which takes the current state of the simulation and then progresses it one more step according to the define movements provided by the input file. Since it is the Controller’s job to tell the others what to do, this was the most reasonable location for the variables/functions to control this loop. The same holds true for the recording of the simulation. If the recording flag is set, then each step through the loop simply creates a screen capture of the simulation at that time, and then compiles all of the screen captures into a movie file.

A few of the members were moved into vizView. These included variables containing the set end time and last captured time of the simulation. Since the view needed to create GUI items to manage these variables anyway, rather than having multiple copies throughout the code it was decided that vizView should contain the only copy.

Once all of the classes were in control of the proper variables, the decision had to be made to determine which folder each class belonged to. In order to make this decision, each individual class was evaluated not only for its functionality, but also for it dependencies on other classes and vice-a-versa. Most classes had obvious locations (i.e. vizControl, vizModel, vizView), while the more difficult ones simply went into the folder which included it the most. A number of utility type classes were placed into a tools folder, and a new ‘Windows’ folder was created under view to house the actual program’s window classes. For a full list of where each file is moved, see Appendix C.
Singleton:
The Singleton Model is a method of programming in which each class contains a static pointer copy of itself. If taken to the extreme, all functions/variables are then declared static, and each reference to each member are accessed through the static copy. The purpose behind this is both to help the program run faster – since static memory is more readily accessible than dynamic memory – and also to ensure that only one instance of each class can exist at a time. However, it also creates a lot more overhead for the developer to keep track of, and in a project such as iNSpect where multiple development teams around the world are constantly making changes it becomes more difficult to maintain. For this reason, it was decided that the Singleton Model should be removed from the program.

In order to accomplish this, all that was necessary was to go through each class containing a static copy and remove it. All references to the copy were also removed, and functions were altered to be called dynamically. All functions/variables had ‘static’ removed from their declaration where necessary, and uses of these members were altered accordingly. However, we were not able to remove all instances of the Singleton Model. iNSpect uses GTK, GDK, and other libraries to handle issues such as threading and GUI. As a result a number of calls are made to these libraries using static member functions as parameters. These functions cannot be used if they are not static; and every function/variable within them must be static as well. In these cases, the singleton copy was being used to access non-static methods within the static ones. In order to remove the copy, all of the variables/methods would have needed to be made static or else have static accessors, and then all of the variables/methods referred to in that method, etc. In these cases the decision was made to leave the copy to avoid even more overhead. The classes which still have copies are Controller, vizViewSimulation, and vizViewValidation.
Parsers:
To fully understand how file interpretation works in iNSpect, an understanding of the types of data the program is able to visualize is required. The file interpreters read files, and turn what they read into four basic types of “events.” These events are:

· Movement events: The events that cause nodes in the visualization to move about.

· Energy events: The events that cause nodes in the visualization to turn on or off.

· Packet events: The events of sending, receiving, forwarding, or dropping packets of data over the network.

· Change in wired link events: The events that cause wired links to be either up or down.

Most files contain data from one of these event types. iNSpect also requires a configuration file which sets the properties of the simulation and the simulation window, such as the size of the window and the background used while viewing the simulation.

When we began, iNSpect was capable of reading two file types which would produce a visualization. These two file types are NS-2 wireless trace files and NS-2 wired trace files. The wireless trace files contain all data necessary to fully visualize the simulation including packet data, energy events, and movement events. Since these files simulate wireless linking, wired links are non-existent. The wired trace files contain energy, packet, and change in wired link events. They must be used in conjunction with a placement file because wired trace files contain no reference to the location of the nodes in the simulation.

Over the course of Field Session, the team implemented two new file types into iNSpect’s programming. One of these two file types are Real Mobility Generator (RealMobGen) wireless trace files. These trace files contain the movement event and energy event data. To start on this, the team's main contact from the client, Jeremy Norman, supplied the team with two executable files. Both of these files however generally made the same file formats. Referencing these files, the team was able to implement the RealMobGen trace files into iNSpect. Adding the RealMobGen was another side Toilers project which we happened to complete.

The second file type is the PCAP output from NS-3. PCAP files contain only packet events and packet data for wired networks, so they must be used in conjunction with both a wired link trace and a placement file. Development of the PCAP implementation started from looking at the NS-3 source already supplied to the team for the project. However programming iNSpect to read the PCAP files was a bit tricky. The raw PCAP format file which is read indirectly is in binary and does not comply well with the current architecture of the file interpreters present. This binary file is formatted into a readable text format for iNSpect via the Linux program tcpdump, using the flags –tt and –r.

Waf:

The coding implementation of Waf is intended to be short and simple, to allow for ease of development. The main Waf executable and a folder called Wafadmin are put in a top-level directory that contains all source code for the project. The only coding required is a single script file in the same directory as the Waf executable. The final file produced for iNSpect is included as Appendix D. The majority of its length is a simple list of all .cpp files needed to be built, as indicated by comments within the file. A number of option lines note the compiler to be used, what directory to use for temporary files, and where to build the final executable. Finally, there is a section with instructions for the compiler to find various libraries needed such as gtk, gdk, and glib. It is on these library commands that problems arose.

Waf has several built in methods for automating library detection, searching in common locations and in any folders in the LIB_PATH environment variable. However, it became apparent that Waf had difficulties finding the libraries installed on the computers in the Alamode lab in the default locations. It was attempted to install the libraries elsewhere on the system and add the new locations to LIB_PATH, but this also failed. Finally the library source code was added to the source directory of iNSpect, and header file includes were manually changed to point to the source directories within iNSpect. The source code inclusion and manual header changes allowed the iNSpect code to compile fully, unlike all other attempts. However, it then failed to link library functions properly into the iNSpect code. It was determined that further manual header changes within the libraries themselves could fix at least some of the linker errors.

As needing to include a customized version of a commonly installed library is not a desirable solution, the team decided to not continue that line of debugging and seek developer assistance. During earlier work on Waf the team had consulted the Waf user mailing list and IRC channel. After speaking with them again we discovered that there is a known bug in Waf code with certain libraries, specifically glib. Further discussion with developers indicated that this error would be solved in a forthcoming update to the Waf code. Unfortunately, it was also indicated that the release date of the update would be during or after the final week of field session. Until that time no stable build of Waf with the bug fix would be available for testing, and so it was deemed impractical to pursue Waf any further.

At this point the Waf wscript file was given extensive commenting to indicate the purpose of all lines within the script, as well as comments to future developers who might make use of the script. This script was added to a branch of iNSpect which was then committed to the toilers code repository.
Background Images:
As explained in the previous section, background images were at one point already a part of iNSpect’s programming. Due to this fact, background images took little time to re-implement back into the code. An old copy of iNSpect was found which included background images and re-implementation was based off of this old code into the recent version of iNSpect. iNSpect’s visualization window for the simulation now can have an image in the background similar to the data being simulated. However if no image is specified by the user, a gradient white-to-gray image is set as the default. The team and client believe this looks better than the plain white background.
Threading:

The implementation of threading to iNSpect can be viewed as modifying an already existing, working process. The file readers were in perfect working order prior to any threading changes, so that functionality needed to be preserved. It was therefore determined for as little architecture to be changed as possible while adding threads. Adding threads involved two parts, first properly creating the threads, and secondly ensuring the security of shared variables.

To create the threads it was determined to use the DataAccessObject class, which is created as a member of the Model. The single DataAccessObject contains functions which create a vector of DataAccessors, with one DataAccessor per file to be read. As each object is added to the vector a helper function is called by the glib function g_thread_create. The helper function, now a separate thread, calls a function from SequentialStreamDataAccessor which contains the file reading loop. This loop contains a function which calls the interpreter specific to the file being read. The created thread continues reading input until the end of the file is reached, and then terminates.

Thread safety applied to a number of data variables, such as the current simulation time, as well as to several functions of the Model class that modified data. This was accomplished through use of the GMutex class from the glib library and a custom ScopedLock class. The ScopedLock takes a GMutex object and a string that can be used as an error message specific to that instance of ScopedLock. This feature was highly useful during debugging. Two GMutex objects exist as data members of Controller, one used to prevent file readers from beginning before the Model is properly initialized, and the other used to allow only single write access to Model. Several classes had throwaway GMutex objects, typically called m_mutex, used only within a particular instance of an object in order to satisfy the parameters of g_cond_wait.

Two GCond objects are used to block threads. One, called threadCond, blocks the file reader threads if the Controller and Model classes have not completed their initialization. If threads block on this condition, they are woken up by a call from Controller. The second condition is used to block the simulationRuntimeLoop, which manages all aspects of the graphical output, if it is attempting to display a simulation time that has not yet been loaded by the file reader thread. After any line is read by a file reader, the SimulationRuntimeLoop is woken up and checks again if the data for the time to display is properly loaded.

While threading is currently complete and free of known bugs at this time, it is likely possible it can be further improved upon. It may be possible to reduce the number of mutex and ScopedLock calls by identifying more precisely which functions need to be protected. This could be best done by someone with a deeper knowledge of iNSpect's Model class and its approach to adding new input to the model. It may also be possible to have a different solution to pausing simulationRuntimeLoop when it tries to display unloaded data, as opposed to the current wait/check loop.
Timeline:
The team has created a final actual completion time-line for all of the required tasks. This final actual completion time-line shows each task with the corresponding completion date. This time-line can found in Appendix B marked as Table 2.
Project Scope

Over the course of the field session, many tasks assigned to the team by the Toilers Research Group as their field session project were completed. We will quickly revisit these tasks and discuss their classifications. The tasks given to the team were split up into three different sections: required, en-route, and optional if time permits.

The required tasks are tasks which the team was required to complete by the end of the six weeks given to work on the projects:

· Completing the MVC architecture restructure

· Removing the Singleton model from the code

· Adding in background images

· Threading file readers

· Add a mobility parser

· Continue fail-fast functionality in the code

· Taking care of XXX comments within the code

En-route tasks are tasks which are not required, yet should be reasonably attempted by the team with a decent amount of work:

· Adding NS-3 parsers

· Changing iNSpect to use the Waf build system instead of the makefile system

The optional tasks if time permits are tasks only to be achieved if all other tasks are done, or if they are come-across during the completion of a required task:

· Data Access Object (DAO) using notify rather than polling for readiness

· Making sure all nodes referenced are valid in the ensures in the DAO system

· Rewrite Data Event

· All XXX/TODO/Etc comments

· Fix the last node problem (18138 being displayed instead of the actual last node number)

With the six weeks given to the team, many tasks were completed and a few others have been attempted yet come across permanent roadblocks. There were also extra tasks not given that the team completed due to issues they discovered in the code during their work. The following lists will show the result of each of these tasks:

· MVC Restructuring – Completed in 4 weeks.

· Remove Singleton Model – Completed in 5 weeks.

· Threading file-readers – Completed in 5 weeks.

· Background images – Completed in 3 weeks.

· Mobility Parser – Completed in 2 weeks.

· PCAP Implementation – Completed in 2 weeks near the end of field session.

· XXX comments – Completed all possible ones along the way of the 6 weeks when come across during work on another task.

· TODO comments – Completed all possible ones along the way of the 6 weeks when come across during work on another task.

· Fail-Fast Functionality – Followed as instructed by the client throughout project.

· Last node problem – Completed in 1 day.

· DAO notifying – Seems previously completed in iNSpect, the team never had an opportunity to work on this task.
· DAO node referenced – The DAO system seems to be working correctly as of the end of the project, the team never had an opportunity to work on this task.
· Data Event rewrite – Never attempted due to time.

· Speed Up Button Not Working – Completed in 1 day.

· Movie Recording Not Working – Completed in 1 Day however the movie sometimes jolts around.

· Waf Build System – Not completed due to techinical limitations of Waf and was removed as a requirement. See Report for Details. Worked on for 4 weeks. Of these 4 weeks, 2 weeks was used on research as to how exactly the Waf build system works.

· NS-3 Parsers – Not completed because the output format was never defined for NS-3 by the end of the project and was removed as a requirement.

Conclusion

The Toiler’s #3 project working on iNSpect has been slightly different than most projects in that the team was not developing their own program to obtain a desired result, but rather maintaining already existing code and improving it for future uses. One of the main improvements the team implemented into the iNSpect program include the near-full restructuring of the code into the Model-View-Controller (MVC) architecture. As described in the report, this task took a vast amount of time for the team to complete. Another major improvement is the threading of the file readers used in the program so that iNSpect would load faster and be able to run while simulation data is still being loaded into the program. Interpreters and parsers were developed to be used in iNSpect to improve its overall functionality as well. The minor additions were added to the project which were requested by the client such as the comments in the code requesting the team to update or edit something in the program, re-adding background images, and various fixes the team did while working with the code over the course of the six weeks. To complete all of these tasks and requirements the team had to develop strategies to approach them and how the team may work together yet separately on different tasks by splitting up into minor pairs. Once the strategies were exercised it did not take the team long to complete the tasks required by the client as well as spend a sufficient amount of time on other tasks the client was interested in being completed.

Due to this unique project, we feel as if our team has learned the value of being easily adaptable to code and new coding environments which we are not familiar with. Since the project as a whole was broken down into many sub-projects, we learned not only the importance of trusting each other to ably perform the task given to him but also how to help each other while not losing sight of our own goals. We believe that we have completed every task we have set out to accomplish, with a few exceptions due to time and resource restraints. We move on now leaving iNSpect in a better state for future developers, and more prepared ourselves for future projects which we will a part of developing.
Appendix A

[image: image1.jpg]Tonenwr
oy} Ul el Au

1 8pou pajosles

0 e1ep ay) shejdsy

JeIS SpONMaINZIA

suonInofe [PONZI PUE SUOISIHEP
J8ll01u0D J0 SINSa) 3L SAeidsiq -

uopejnus .
U} joju00 0}
soryieu sepinoId -| |

[0AUOOMBIAZIA

poferdsips|
uopeinuwis ay) aioym
Mopum [enoE Y1 -

UONBINWISMBINZIA

TEISPONMBINZA : MOPLIIEIS3POU Ul
JOUODMBIAZI : MOPULOIIOD
uonEINWIS MBIAZI : MOPULAAUOTEILLS U
1ePOWZh : [Bpou”
0310 * o0 U

feidsip 01 JeuMm MAIAZA SIBL -
e 0) suonemofEd
Teum pue 2101 0}

SOIgeLIE e 19PONZA SIoL -

opowzn : jopouruf 7|

Jal0u00

wopeus o ul
8pou yoes Buibeuew|
¢ 10} iqsUOdsEY -
10103000 Ul U199 o1
o paseq suoneioled swioed - JoBeuepapoN
Jebeuepyepou”w|
walqosseooveleq : oep |
MBIAZIA : MBIA_ U
19]|0U0D : J8jj0AU0O” W
. uogelus o 10y sal
[ELL Y L nduy jo Buisied pue|
v b Busseooe selpuek -
/ welqossecovereq
Jequiw

yoea Aq pasn sassep uevodw
PUE ‘@IM99YOIR QAW B4} O SInIEs)
urew auy BunuBiUBIY weiberp a1seq v

(@10idwoou) weibeiq ssen TN

Figure 1: Model-View-Controller (MVC) Architecture

Appendix B

	Task
	Expected Completion Date

	MVC Architecture
	6th Week

	Singleton Model
	6th Week

	Threading
	4th Week

	Waf
	4th Week

	Background Images
	3rd Week

	Parsers
	

	 Mobility
	2nd Week

	 NS-3
	Removed

	 PCAP
	5th Week

 Table 1: Expected Time-line

	Task
	Completion Date

	MVC Architecture
	4th Week

	Singleton Model
	5th Week

	Threading
	5th Week

	Waf
	Incomplete/Removed*

	Background Images
	3rd Week

	Parsers
	

	 Mobility
	2nd Week

	 NS-3
	Removed

	 PCAP
	5th Week

 Table 2: Actual Time-line

 *Waf was incomplete due to unavailability of Waf working for iNSpect. See Report.

Appendix C

The following is a list of files moved for the MVC architecture restructuring:
Old File Location

->
new File Location

src/vizModel.h

->
src/model/vizModel.h

src/vizModel.cpp

->
src/model/vizModel.cpp

src/configFile_defaults.h
->
src/controller/configFile_defaults.h

src/configFile.h

->
src/controller/configFile.h

src/configFile.cpp

->
src/controller/configFile.cpp

src/utils.h

->
src/tools/utils.h

src/utils.cpp

->
src/tools/utils.cpp

src/counted_ptr.h

->
src/tools/counted_ptr.h

src/EventVectorIterator.h
->
src/tools/EventVectorIterator

src/parseEventListener.h
->
src/summerTeam/parseEventListener.h

src/parseEvent.h

->
src/summerTeam/parseEvent.h

src/signal.h

->
src/view/signals.h

src/ScopedLock.h

->
src/tools/ScopedLock.h

src/vizViewControl.h

->
src/view/windows/vizViewControl.h

src/vizViewControl.cpp
->
src/view/windows/vizViewControl.cpp

src/vizViewSimulation.h
->
src/view/windows/vizViewSimulation.h

src/vizViewSimulation.cpp
->
src/view/windows/vizViewSimulation.cpp

src/vizViewValidation.h
->
src/view/vizViewValidation.h

src/vizViewValidation.cpp
->
src/view/vizViewValidation.cpp

src/vizWindow.h

->
src/view/windows/vizWindow.h

src/vizWindow.cpp

->
src/view/windows/vizWindow.cpp

src/GUIWidget.h

->
src/view/windows/GUIWidget.h

src/constants.h

->
src/tools/constants.h

src/vizView.h

->
src/view/vizView.h

src/vizView.cpp

->
src/view/vizView.cpp

Appendix D

Wscript found in the src folder of the iNSpect directory:
#! /usr/bin/env python

###

#Waf is a build system intended to replace Autotools and similar tools

#The file 'Waf' in the same directory as this file, and the folder

#Wafadmin in its parent directory, are needed to run the system.

#This 'wscript' file contains the specific compiling instructions for iNSpect.

#This wscript was made for Waf 1.4.2, and iNSpect revision ____.

#At the time an error with Waf and loading certain libraries prevented

#proper linking of the gtk and glib libraries. More recent versions of

#Waf may have corrected this problem and be usable with iNSpect.

#The Waf developer's group can be found at http://code.google.com/p/Waf/

#A user manual can be found at http://Waf.googlecode.com/svn/trunk/doc/Waf.pdf

#

Authors:
John-Carl Guthrie, jguthrie@mines.edu

#

Dan Slattery, dslatter@mines.edu

###

#srcdir indicates that all source files for program are in current directory or subdirectories

srcdir = '.'

#blddir indicates where object files and other temporary files will be stored

blddir = 'build'

def set_options(opt):

 #part of enabling the c++ compiler

 opt.tool_options('compiler_cxx')

 return

def configure(conf):

 #part of enabling the c++ compiler

 conf.check_tool('compiler_cxx')

 #create a configurator, which should automatically find the gtk library

 #gtkconfig = conf.create_pkgconfig_configurator()

 #gtkconfig.name = 'gtk+-2.0'

 #gtkconfig.uselib = 'GTK_CONFIG_STORE'

 #gtkconfig.mandatory = True

 #gtkconfig.message = 'Finding the GTK library failed'

 #gtkconfig.run()

 #create a configurator, which should automatically find the glib library

 #glibconfig = conf.create_pkgconfig_configurator()

 #glibconfig.name = 'glib-2.0'

 #glibconfig.uselib = 'GLIB_CONFIG_STORE'

 #glibconfig.mandatory = True

 #glibconfig.message = 'Finding the glib library failed'

 #glibconfig.run()

 #'smaller' versions of configurators, compiles the same way as above

 #and as above, should work, may not completely

 #due to an error in Waf, this call is needed to get gthreads to work

 conf.check_pkg ('gthread-2.0', destvar='GTHREAD', vnum='0.1', mandatory=True)

 conf.check_pkg ('gtk+-2.0', destvar='GTK2', vnum='0.1', mandatory=True)

 conf.check_pkg ('glib-2.0', destvar='GLIB2', vnum='0.1', mandatory=True)

 return

def build(bld):

 #create build object, define as c++ and as an executable

 obj = bld.create_obj('cpp', 'program')

 #lists all source files to be included in the build

 #to add source files, place the filename and path to the file from src on a line

 #be sure to enclose the path and name in single quotes, and terminate the line with a comma

 obj.source = [

 'iNSpect.cpp',

 'controller/configFile.cpp',

 'tools/utils.cpp',

 'controller/vizControl.cpp',

 'model/vizModel.cpp',

 'view/vizView.cpp',

 'view/Windows/vizViewControl.cpp',

 'view/Windows/vizViewNodeStats.cpp',

 'view/Windows/vizViewSimulation.cpp',

 'view/vizViewValidation.cpp',

 'view/Windows/vizWindow.cpp',

 'controller/Controller.cpp',

 'model/SpaceVector.cpp',

 'model/core/NodeManager.cpp',

 'model/core/SimulationModelObject.cpp',

 'model/core/WiredLink.cpp',

 'model/datahandlers/NodeEventDataHandler.cpp',

 'model/datasource/DataAccessObject.cpp',

 'model/datasource/DataAccessor.cpp',

 'model/datasource/SequentialStreamDataAccessor.cpp',

 'model/datasource/interpreters/DataInterpreter.cpp',

 'model/datasource/interpreters/Ns2WiredTraceInterpreter.cpp',

 'model/datasource/interpreters/Ns2WirelessTraceInterpreter.cpp',

 'model/datasource/interpreters/PlacementFileInterpreter.cpp',

 'model/datasource/interpreters/MobilityTraceInterpreter.cpp',

 'subjects/vizLine.cpp',

 'subjects/vizNode.cpp',

 'subjects/events/vizNodeEnergyEvent.cpp',

 'subjects/events/vizNodeEvent.cpp',

 'subjects/events/vizNodeMovementEvent.cpp',

 'subjects/events/vizNodePacketEvent.cpp',

 'subjects/events/vizNodeWiredLinkStateChangeEvent.cpp',

 'tools/Diroperations.cpp',

 'tools/Fileaccess.cpp',

 'view/DrawableObject.cpp',

 'view/GlRotation.cpp',

 'view/PrecompiledGlHandle.cpp',

 'view/RgbColor.cpp',

 'view/Renderers/BackgroundShpRenderer.cpp',

 'view/Renderers/LinkRenderer.cpp',

 'view/Renderers/NodeRenderer.cpp',

]

 #name of executable to be built

 obj.target = 'iNSpect'

 #call in include the configurator

 #if other configurators added, add them to the list, separated by a space

 #most recent version of Waf may have changed how this is done

 obj.uselib = 'GTHREAD GLIB2 GTK2'

 return

Glossary

DAO - Data Access Object - manages the accessing and storage of file information.
GDK - an intermediate layer which isolates GTK+ from the details of the windowing system.
GLib - a low-level core library that forms the basis of GTK. Provides data structure handling for C, portability wrappers and interfaces for such run-time functionality as an event loop, threads, dynamic loading and an object system. Definition from http://www.gtk.org/ .
GTK - built from the basis of GLib, Pango, Cairo, and ATK. A highly usable, feature rich toolkit for creating graphical user interfaces which boasts cross platform compatibility and an easy to use API. Definition from http://www.gtk.org/ .
iNSpect - a network simulation visualization tool developed by the Toilers Research Group for visualization wired and/or wireless network connections simulated through NS-2 (before field session).
IRC - Internet Relay Chat - chat program used by various different online communities and companies.
MVC - Model-View-Control Architecture - used in software engineering to define a pattern in architecture where model is the representation for information, view renders the model into a intractable form such as a user interface, and control process and responds to events, actions, and changes.
Mutex – a synchronization tool used in threading to protect resources from reading and writing.
NS-3 - Network Simulator 3 - the next major version of NS-2, a network simulation tool for simulating TCP, routing, and multicast protocols over wired and wireless networks.
NS-2 - Network Simulator 2 - current release, a network simulation tool for simulating TCP, routing, and multicast protocols over wired and wireless networks.
RealMobGen – Real Mobility Generator – used with NS-2 network simulator, it is a generalized real mobility model generator.
Tcpdump – a tool which allows users to intercept and display TCP/IP and other packets being transmitted/received over a network.
Waf - a software build system to assist in automatic compilation of other programs.
Wscript - Waf's script to be included in the source folder and sub-folders for creating objects from code.

References

EDrawSoft. “EDraw Soft Diagrammer.” EDraw Soft Diagrammer 3.2. 2007. Hosted by Free
Downloads Center. June 2008.
http://www.freedownloadscenter.com/Multimedia_and_Graphics/Animated_GIF_Edito
rs/EDraw_Soft_Diagrammer.html.

GNOME Foundation. “GDK Reference Manual – GNOME Library.” GDK Reference Manual.
2007. Hosted by Red Hat. May 2008. http://library.gnome.org/devel/gdk/.

GTK+ Team, The. “GTK+ - About.” The GTK+ Project. 2007. Unknown host. May 2008.
http://www.gtk.org/.

Nsnam. “ns-3 Coding Style.” Ns-3 Coding Style. 2008. Unknown host. 13 May 2008.
http://www.nsnam.org/codingstyle.html.

Toilers Group. “nsInspectProject < Toilers < Twiki -.” Toilers iNSpect Twiki. 2008. Hosted by
Colorado School of Mines. 13 May 2008.
http://toilers.mines.edu/Toilers/NsInspectProject.

Toilers Group. “Index of ~/jnoman/toilers/inspect.” iNSpect Directory. 2008. Hosted by
Colorado School of Mines. 13 May 2008.
http://alamode.mines.edu/~jnorman/toilers/inspect/.

Waf Developers. “http://Waf.googlecode.com/svn/trunk/doc/Waf.pdf.” Waf user’s guide –
Waf 1.4.1. 2008. Hosted by googlecode.com. May 2008.
http://Waf.googlecode.com/svn/trunk/doc/Waf.pdf.

Waf Developers. “Waf – Google Code.” Waf – The Build System. 2008. Hosted by
googlecode.com. May 2008. http://code.google.com/p/Waf/.

Waf Developers. “#Waf irc log.” #Waf ic log. 2008. Hosted by colabti.org. May 2008.
http://colabti.org/irclogger/irclogger_logs/Waf.
B-1

