Visualization Tool Final Report

Josh Keyoth

6-15-08

Field Session 2008 – Toilers #1

Abstract

My task was to create a visualization tool for Nick Hubbell's sensor network simulation. The visualizer will change the results from Nick's simulation into a node graph. This graph shows a connection between each node and its parent, representing data transfer. Also, each node needs to be colored, to show which event that node is part of. Along with this, an image is to be displayed behind the graph for each simulation step, showing the extent of the chemical plume. This is implemented as a gradient, with a darker color showing higher density. Lastly, information about each node is displayed in a collapsible tree. This Visualization tool is written in Python, mainly using the Tkinter module. A start on a file reader is provided, and is written in C++.

Table of Contents

 1. Introduction

 2. Specifications

 2.1. Rendering Nodes

 2.2. Background

 2.3. Node Information

 3. Design and Implementation

 3.1. File Interpreter

 3.2. Rendering

 3.3. Node Information

 3.4. Background

 3.5. Coming Together

 4. Conclusion

 4.1. Lessons Learned

 5. Resources and References

 A. Appendix A

1. Introduction

This is a report on my Field Session 2008 Project, titled Toilers #1. My project was to provide a way of visualizing the data from a simulation of wirelessly networked chemical sensors. At the beginning, it was recommended that I use a preexisting tool called iNSpect. This tool was created for the visualization of wireless networks, and seemed to be a good place to start on this project.

After examining iNSpect, I came to the conclusion that it wasn't a good match after all. The simulation that iNSpect visualized, NS2, and the simulation that I am visualizing were very different, with differing methodologies. NS2 traces are event based, so that information is only updated when it changes, where as Nick's simulation outputs a snapshot of all the data for every frame. In NS2, the nodes are all mobile, while Nick's are stationary and static. Also, the steps I would have taken to adapt iNSpect are the same steps I have taken towards creating my own visualization tool; iNSpect would have also required a file interpreter and renderer be written, as well as code to display the background and node information window. In the end, I decided, with Nick Hubbell's and Qi Han's consent, that writing a new tool would both save time and produce a better product.

This project's goal was the creation of a visualization tool for a simulation. This visualizer takes the data outputted by the simulation and displays it in a graphical format. Having a tool that does this, comprehending what is happening in a simulation, as well as debugging that simulation, are much easier.

I started this project with the file interpreter. This was the part of the project that would get the information from the simulation. I ran into a lot a problems during this section, and as a result, it is not complete. The basis for getting the information is there, but the information is not used in the rest of the visualization.

Next was the user interface and rendering of the nodes. The interface is just a window with an output area and a group of buttons at the bottom. These buttons control the visualization, while the output area is where the nodes are rendered. Rendering of the nodes consists of drawing a circle to represent the node, as well as arrows representing the hierarchy of nodes. Related to the user interface, there is the node information area. This is the area to the right of the rest of the visualization. In this area a tree is displayed, showing all the information about each node. This part of the project went well, and is complete.

The last part of the visualization was the background. It is displayed behind the rendering of the nodes, in the output area. This background is an animation of a gradient. This gradient represents the raw plume information, which is the data pulled from a second input file.

2. Specifications

The specifications for this project were, for the most part, simple and concise. I was to build a tool that would visualize the data outputted by a simulation of wireless sensors. The main requirement was that the nodes be displayed on the screen. Behind these nodes a background would be displayed. Lastly, each node would have to be “inspect-able,” displaying more information about them in a separate area.

2.1 Rendering Nodes

Rendering the nodes to the screen was the most important portion of the project. The nodes would be arranged to reflect their positions in the simulation. Grouping the nodes together, arrows would be drawn from a node to its cluster head, or CH. Also, each node had to be color coded to show which plume it was sensing.

2.2 Background

Behind the rendering of the nodes and their connections, A gradient background that changed with each frame was to be displayed. My perception of the background requirement changed a few times over the course of this project. At the very beginning, I believed there would only be one input file, and as such I would only have information about the chemical plume intensity at certain points. This led me to find ways of interpolation this information to fill in the gradient. Somewhere around the middle of the project, I learned that there would in fact be two inputs, one from the simulation, and one giving the raw plume data. As a result, the background portion of the project was changed a few times. In the end, the background would be a simple rendering of the raw plume trace data.

2.3 Node Information

Each node contains more information that just its position and which event it belongs to. A separate area was needed to output this data. This area would consist of a tree structure, with each node being collapsible to show only the wanted information. The best way to describe this tree, as it was described to me, is it's like the variable area in an IDE when you are debugging a program.

For now, this visualization will be run after the simulation is done running. In the future, the simulation might complete one frame and send that to the visualization, so that both are running at once. I have kept this in mind in my design, isolating the file interpreter from the rest of the visualization. Figure A1 in appendix A illustrates how this tool fits in with the rest of the simulation as of now, and how it might in the future.

3. Design and Implementation

The final version of the visualization tool is designed as follows. There are certain parts of this design that I would improve upon, if I had more time. I will note these areas as I discuss them.

3.1 File Interpreter

The file interpreter is the part of the program that takes data from the simulation and turns it in to objects for the visualization. My design for this section was influenced greatly by the need to use Nick Hubbell's serialization code. This meant I had to use a language that was compatible with C, the language Nick had used. I chose C++, as I have some experience with it, as well as the fact that it is able to use Nick's code and is object oriented. Also, I wanted to be able to wrap the code into Python, but this did not get completed.

As for the design of the file interpreter itself, I wanted to be as straightforward as possible. The file that is read in is in a serialized format. The interpreter reads in a string of characters that is the serialized data, and then sends it to Nick's code, which returns a NodeSnapshot object. This NodeSnapshot contains all of the information needed for the visualization. The next step is to convert the NodeSnapshot into a structure that will be used for the visualization. This part of my code doesn't work as of now.

3.2 Rendering

This section, as well as all that follow, are written in Python. Any graphical or user interface code is in Python using the Tkinter module. The Tkinter module is an interface to the Tcl/Tk libraries for Python. This module is very easy to use and produces a nice interface. Another nice feature of it is that it uses the local look and feel, which improves portability. In Tkinter, there is a widget named Canvas, which allows for custom drawing, and so was an obvious choice for the output area.

After data is read in, it needs to be rendered to the screen in a meaningful way. This is the job of the renderer. It uses data already stored in objects to draw the nodes and connections to a Canvas. The nodes are just drawn as circles with their centers at the node's position. The connections, arrows pointing from a node to its cluster head, are a little more complicated. The arrow is drawn from the center of the starting node to the edge of the cluster head's circle. This is to prevent the cluster head from covering all the arrowheads. The last job of renderer is to color code the nodes. I found the best way to do this was to draw the nodes in order of which event they belong to, instead of going through the node list. For each event, I draw each one of its members, checking to see if that node is a cluster head, which gets a black border. When a node is drawn this way, a flag is set to remember that it has been drawn. After all the events are passed through, the renderer runs through all of the nodes one more time, drawing any that weren't included in an event. Nodes not in an event are drawn gray. A screen shot in the appendix A (Figure A2) shows the rendering. At the end of the function, all the node's flags are set back to not drawn.

Because the simulation's area is not a set size, and because it is very unlikely the simulation area and output area sizes will match, the node's positions are transformed to fit into the output area nicely. I maintain a 50 pixel border around any node, so that the edge of a node is never on the edge of the screen. The only problem I can see arising from this is if the simulation area is extremely large, and nodes are close together, which may cause some overlapping. Given more time, I would change the size of the circle drawn to be dynamic, to prevent this overlapping.

This section of my code behaves as I want it to. It meets all of the requirements, and is able to redraw faster than the upper bound on the visualization's speed. All in all, I'm pleased with how this turned out.

3.3 Node Information

The node information area started out in my design as part of the renderer. This changed to become its own section, as I had a better idea of how to do this. Originally I was going to pop up a separate window to display the information, but after testing my user interface, I decided it needed a dedicated area to itself. In the final version, the right side of the visualization is now the information area.

This information area displays all the data stored in the node's structure. It does this in a tree. Each node can be expanded to show its information. This information updates each step of the visualization, but this comes with a side effect. Each time the information is updated, the tree collapses itself. This bug doesn't actually break the functionality, but it can be annoying. I have not yet determined if this is a bug in the tree widget's code, which isn't documented, or the visualization's code.

To actually display this tree, a tree widget from the idle library is used. I have used a snippet of code I found online to do this, adding in the node information. This tree widget uses a combination of a canvas to paint to, and XML to store the information. Because of this, I have created a function to translate the node structures information into an XML string. More information can easily be displayed for each node by adding to this string.

3.4 Background

The design for the background part of this project has changed many times. At first, it took the intensity information from each node and interpolated upon it to produce a gradient. I then found out that I could use a raw plume trace file to get the intensity at any point in the simulation, which negated the need for the interpolation, so that section of the program was abandoned. I was then accidentally sent the wrong file type, which only contained the intensity at each node, which meant the interpolation was going to be needed. In the end, I have received confirmation that the raw plume trace does actually contain the intensity at any point, and this is what I have gone with.

The background section uses the file containing the intensity at any point in the simulation to color those points in the simulation. For any pixels not colored after this, a linear combination of the data is used to get their color. This will create a smooth looking gradient, without it containing holes or looking “pixelated.” The gradient background is updated once every frame, so that it will appear animated as the simulation runs.

As of the writing of this, I still have not received a raw plume trace file, and as such this section of code is untested.

3.5 Coming together

The four major parts of this project, the file interpreter, the renderer, the node information area and the background, work together with the user interface to create the visualization. The file interpreter gets the data, and stores it in objects. The renderer and node information area use this data to display it in useful ways. The background takes the plume data read in by the interpreter and uses it to draw its animated gradient. An illustration of this is in figure A3, in appendix A.

4. Conclusion

This visualization tool has evolved a lot over the course of this field session. It started as an extension to the iNSpect tool, though soon became a completely separate project. This separate project started out as completely written in Python, though the design soon had to incorporate C++ code. The background changed from colorful gradients interpolation from the node's data, to a gray scale gradient as taken from a separate file, using real data instead.

I believe I have met the requirements of this project, to the best of my capabilities and resources. This tool is not yet ready for use, but it is close. A file interpreter, some additions to the data displayed in the node information window, and possibly some fixes to the background, are all that it requires. Also, I have tried to make it possible for future additions, such as the ability for nodes to be mobile, or for data to be streamed in instead of read from a file.

4.1 Lessons Learned

I have learned many lessons from this project. This was my first experience working with a client, as well as my first experience with working on a large project. I am pleased with how this project, and how the visualization, turned out, though I do wish I could have completed the file interpreter. I learned a few things about prioritizing; I should have started on the visualization a lot earlier instead of putting so much time into the interpreter. Also, I've learned that it is hard to keep everybody involved updated on everything. Last, through working on my own, I have seen how a partner or group can be necessary.

I also learned a couple of technical things. I had never used Tkinter before, and my experience with Python was limited. This project gave me a chance to learn more about both. I also got to explore using two languages together, something that I will probably continue learning about.

5. Resources and References

<http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/259116>

I used the code example on this site to build the node information window's tree. I basically copy and pasted, then added what was needed, like the XML building function.

Dr. Roman Tankelevich

Dr. Tankelevich was extremely helpful with this project. He steered me in the right direction more than once, and also provided me with the math behind the interpolation problem. Thanks!

http://en.wikipedia.org/wiki/Bilinear_interpolation

This site provided me with the formula for the background.

Appendix A

[image: image1.png]2

0
Cluster Head

Regular Node

1
Node not in an event

Connection

Figure A1

How the Visualization gets information now, and how it might in the future

[image: image2.png]Raw Plume Trace

Background

Simulation

s Trace file

File Interpreter

Node Information
Window

Renderer

Figure A2

A Screen shot of the output area, with notes

[image: image3.png]Current

Simulation -‘ Trace file -|\ﬁsuahzer

Future

Simulation —,I Single Frame —-{ Visualizer

I

Figure A3

How the parts of the project fit together

