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Executive Summary

In 1956, John Hubbert introduced what is now known as the “Hubbert Curve”. The Hubbert curve was a groundbreaking mathematical model that attempted to answer the following questions:  

· Did (or when does) the US (or world) oil production peak?  

· What is a fair estimate of the remaining resource?  

Other models have been established and utilized in attempting to answer these questions, but none have produced a consistent answer.  

The project consists of three main sections. First, past and present methods to estimate the remaining oil in the world were researched in order to establish a basic foundation from which to start working. The second task was to use the data provided from the United States Geological Survey regarding global and North Dakota oil production to find parametric families of equations that model and predict the data reasonably well. Using these equations, the third task was to simulate oil exploration and extraction using R, software designed for statistics and simulation.  

The team employed several parametric families using linear and nonlinear regression to model both datasets. The team also developed a simulation of oil production in an artificial world. All of the parametric families were then tested with the data produced from the simulation. However, given time restraints, the team was not able to fully interpret the data. 

Included in this report are the team’s findings and directions for future data interpretation.  
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Project Abstract

The world’s dependence on fossil fuels has led to much debate regarding the
remaining extractable crude oil. Many argue that the annual production of oil
has declined in the past years and will continue to decay. A well-known method
of approximating the growth, peak, and decline of finite, nonrenewable
resources, such as oil, is the Hubbert model created in 1956. This model uses linear regression to approximate future oil production and reserves.  Other alternative
methods have been suggested since based on non-linear statistical models.  It has been suggested that these other models are more accurate than the linear Hubbert model.

The team attempted to approximate the time, quantity, and nature of decline
of the world’s peak crude oil production given specific data sets. In order to
determine this information, the team modeled the data with analytical,
non-linear curves. The team used parametric families of functions that
describe our curves and eventually simulated oil production for a theoretical
world.  R was the primary programming language used to accomplish these tasks.  Other software utilized was Microsoft Excel, Microsoft Word, and LaTex.

1. Introduction

The potential of oil has been known for more than a century, and the resource has been used without abandon. However, at the dawn of the 21st century, global focus has been redirected, not at the untapped potential of oil as it was during the first throes of discovery, but rather at the dwindling supplies of this nonrenewable natural resource. Mathematical methods have been introduced and disputed since the prospect of global dependence on this natural resource became a virtual certainty (Hubbert, Marion K).

One of these methods, the “Hubbert curve”, empirically approximates the full cycle of the growth, peaking, and subsequent decline to zero of the “production” [(quantity/year) vs. year] of a finite, nonrenewable resource, like oil. The Hubbert curve approximates production data with the derivative of the logistic function, closely resembling a Gaussian distribution. This approximation is reasonable because, over the long run, production of oil must initially start at zero, rise to one or more maxima, and eventually return to zero.

The “Hubbert method” uses linear regression, where a line is fitted best according to the data points. Shown in Figure 1 is the linear regression model for U.S. Oil Production 1930-2004. This curve represents the correlation between the data and line of best fit. According to Hubbert’s model, the U.S. oil production peaked in 1971 and worldwide in 2000. This model has been argued to be a poor representation of the data sets as a result of the presence of many anomalous data points (e.g. economic crises, political factors).

[image: image1.emf]
Figure 1: US Oil Production 1930-2004 (Source: Boak, Jeremy)

The curve of annual production over cumulative production versus cumulative production must lie above 
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 and will eventually become non-linear. Figure 1 shows that previous linear models inaccurately describe the trends of these particular points. This indicates that Hubbert’s model (linear system) is most likely incorrect. An alternate approach to modeling peak oil production is using nonlinear regression. 

2. Requirements & Specifications

2.1 Scientific requirements

Statistical linear models have been previously used to predict crude oil production. Generally, these linear models have proved to be less than accurate regarding the discovery of the future of global oil. Through the use of non-linear parametric modeling, the team attempted to improve on previous linear models.  The team received two data sets to analyze: one of world oil production and one of North Dakota oil production.

The team attempted to answer the following questions:

· When is/was the peak of global and North Dakota oil production?

· What is a fair estimate of the remaining oil in the world and North Dakota?

· Which method would produce the curve of best fit given the data sets?

· How accurate is the curve?

There were three primary tasks used to accomplish these goals. First, the team produced curves to fit given data sets using non-linear parametric models and compared these new models with previous linear models. Next, the team simulated oil production in an artificial environment that excluded all economical and technological factors. While these factors are significant in determining the course of oil production, it is not feasible to include these factors in a simple simulation. Finally, the team tested these parametric models with the data obtained from the simulation. 

2.2 Implementation constraints

· Learn to use R to implement our tasks

· Use only the North Dakota and World Oil datasets provided to us by the client

· Ignore economic and technological factors in our simulation of oil production

· Simulation of oil fields and drilling is random

In reality, placement and discovery of oil fields is not random.  However, the scope of this project is limited to the statistical aspects, rather than the geological facets of oil production.   

3. Implementation

3.1 Fitting the Curves

The team was provided with two sets of data to analyze, the world data set and the North Dakota data set. Each set was to be fitted using both linear and non-linear methods using R. The parametric families were also used and fitted utilizing the same methods. To determine the accuracy of the curves produced, the team depended on R to return the residuals and 
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 values.

The primary concern with fitting the graphs was to get high
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values for the linear models and low sum of residual values for the nonlinear models. An
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value is a measure of the correlation between two variables for simple linear regression. The value ranges between zero and one, with one being a perfect fit. The team considered all 
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values above 0.7 good. A residual is an observable estimate of the unobservable error. For example, if we have a group of n men, whose heights are measured, the residual is the difference between the height of each man in the sample and the observable sample mean (as opposed to the unobservable population mean).

The functions for the models were chosen qualitatively, based upon the behavior of the data points. Alternate functions may be applied to the same models. The following models are recommended by the team.
3.1.1 Linear Methods

A linear model takes the form:
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where βi  are linear coefficients and εi is the error for the model. The function f(xi) in the model may be linear or non-linear, depending on the desired plot. The coefficients can be found by hand if necessary, however, R has a function, lm, which takes the linear model and the data set as parameters and returns coefficients that minimize the error. The 
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 values can be returned using a summary function call. Many of the linear models analyzed returned 
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 values close to 1, but in terms of predicting future behavior these models are inaccurate. A model that closely follows the current data points may not follow the general data trend.  

3.1.1.1 World Data

The world data consisted of data points ranging from 1900 to 2004. The first 18 years only contained two data points, both of which were vague and probably approximated.    To simplify the analysis, these years were truncated.  The team’s investigation of the data begins at 1918 and ends in 2004. Several linear models were produced to describe the world data set. When analyzing the curve of the Annual Production/Cumulative vs. Cumulative, it was found that the line behaves much like that of the function:
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The linear fit of the 
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function gave average results that could be improved. By checking 
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values of similar functions, the following function gave a better fit of the data set:
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The result for this model is shown in Figure 2 with an 
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 value of 0.969.   The inverse function fits the data points well towards the beginning and end of the graph, but deviates in the center of the graph.  Figure 3 is the linear fit for the curve of the Annual Production vs. Time of the following function:
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The 
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 value for the quadratic model was acceptable, but the data looked more like a concatenation of two parabolas.  The single quadratic fit does not account for the dip in the data around 1980.  There are large residuals because the fit is poor in many areas of the graph. The 
[image: image17.wmf]2
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value of two superimposed parabolas, 0.987, was much better. Figure 4 gives the model where the data is split at 1972 (value found through multiple trials).  The two-parabola fit better models the dip in the data and corresponds to more of the data points.
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Figure 2: Annual Production/Cumulative vs. Cumulative for World (1918-2004) – Annual production over cumulative production is plotted versus cumulative production for the world data set using the linear model given in Equation (3) and returns an R2 value of .969
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Figure 3: Annual Production vs. Time for World (1918-2004) - Annual production is plotted versus time for the world data set using the linear model given in Equation (4)
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Figure 4: Annual Production vs. Time for World (1918-2004) – Annual production is plotted versus time for the world data set using the two parabolas and returns an R2 value of .987

3.1.1.2 North Dakota Data

The North Dakota data set was analyzed initially by fitting simple lines to all of the data points. These lines were of poor fit because the spread of the data and the presence of anomalous points. The major trends in the data allowed the data to be partition and analyzed in different sections (1951-1973, 1974-2005). The data was then fitted to various linear models using functions in R. The coefficients for the following equations were obtained using trial and error by maximizing the 
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 value. Figure 5 shows the curve of best fit for the entire North Dakota data set taking the form:
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The resultant 
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 value for this function is 0.7384.   This fit seems to account for much of the curvature in the data set, but fits poorly at the end. Between 1951-1973, however, the curve of best fit, shown in Figure 6, is:
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The square and quadratic terms were eliminated because they are symmetric about the y-axis. The odd exponents allow for the values of the curve to drop below zero. The 
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 value for this fit is 0.9258.   
This quadratic model fits the general trend of the first set of data well with only a few outlying points. Between 1973-2005, the curve takes the form:
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with an 
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 value of 0.7125, shown in Figure 7. Clearly, the later data set is more random than the earlier, meaning more attention is needed for the post-1963 data when trying to model North Dakota’s ultimate oil production. Since the best
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value of the second set was not any better than the 
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value of the entire set, there was no reason to split the data.
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Figure 5: Annual Production vs. Time for North Dakota (1951-2005) - Annual production is plotted versus time for the North Dakota data set using the linear model given in Equation (5) and returns an R2 value of .7384
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Figure 6: Annual Production vs. Time for North Dakota (1951-1973) - Annual production is plotted versus time for the first half of the North Dakota data set using the linear model given in Equation (6) and returns an R2 value of .9258
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Figure 7: Annual Production vs. Time for North Dakota (1974-2005) - Annual production is plotted versus time for the second half of the North Dakota data set using the linear model given in Equation (7) and returns an R2 value of .7125

3.1.2 Non-Linear Methods

The purpose of fitting the models with the various nonlinear parametric families of equations is to attempt to find a way of fitting the data with non-traditional equations. 

Fitting curves using nonlinear regression takes the form:
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where 
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 is a vector of parameters. In general, an algebraic expression for the best-fitting parameters does not exist, contrary to linear regression. Generally, numerical optimization algorithms are applied to determine the best-fitting parameters. These optimization algorithms traverse the data searching for maxima in the nonlinear model that reduce the sum of squared errors. In contrast to linear regression, where a unique global maximum is generally the case, the non-linear model may contain many local maxima. The nls function in R accepts parameters that allow the programmer to determine which maxima to search. As the default, nls uses the Gauss-Newton method, an iterative procedure to find the local maximum. The presence of multiple maxima necessitates that many different initial values be used in order to determine the nonlinear curve of best fit.

3.1.2.1 World Data

For the world data set, the parametric family of functions includes: 

· Annual Production vs. Time

· Annual Production/Cumulative Production vs. Cumulative Production

· Annual Production vs. Cumulative Production

· Annual/Cumulative Production vs. Time

Statisticians universally accept these four families of functions as ideal for data manipulation. These functions were all analyzed with nonlinear least squared method to find the best-fit curves.  

For the Annual Production vs. Time graph, the team chose to fit the graph with a Gaussian distribution of the form:
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where the coefficients are determined using R’s iterative method. The world data set has not yet reached its production peak so when modeling it with a Gaussian distribution, it is difficult to determine which part of the distribution it should be fitted to. Previous studies (see bibliography) have stated that the peak for the world oil should be around the year 2000. The team decided to estimate the peaks of the Gaussian (x0) varying from the year 2000 to 2010 and produced a graph for each of these functions.  The R predict function completed the graph, based upon the previous fit to the data points. The Annual Production vs. Time graph can be seen in Figure 8. Even though different maximums were chosen for the Gaussians, the graphs are very similar and end around the end of the century.  

[image: image36.jpg]Annual Production

Annual Production vs. Time





Figure 8: Annual Production vs. Time for World Prediction– Annual production is plotted against time for the world production using the non-linear model given in Equation (9) with multiple predictions at peaks ranging from 2000 to 2010

The Annual/Cumulative Production vs. Cumulative Production was fitted with the following equation:
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where, again, the coefficients are determined using R’s iterative method. The fit was good for the many of the beginning points, but deviates from the data later in the graph. The Annual/Cumulative Production vs. Cumulative Production graph is shown in Figure 9.
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Figure 9: Nonlinear Model for P/Q vs. Q for World – Annual production over cumulative production is plotted against cumulative production for the world data set using the non-linear model given in Equation (10)

The Annual Production vs. Cumulative Production is similar to the Annual 

Production vs. Time graph, so it was fitted it with the same distribution. The maximum of the Gaussian vary from 
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 barrels of oil and the subsequent graphs were plotted.  The predict function was used to complete each curve. The Annual Production vs. Cumulative Production graph is shown in Figure 10.  

[image: image41.jpg]Fitted with Gaussian Distribution

S|
~
=
o v
3 -
51
3
)
2 o
S
3
2
Lo
T o
3
o
=

0 20 40 60 80 100

Cumulative Production (10*11 barrels of oil}





Figure 10: Nonlinear Model for P vs. Q for World - Annual production is plotted against cumulative production for the world data using the Gaussian distribution with maximums ranging from 20*1011 to 60*1011  barrels of oil and the curve is plotted using the predict function in R

The Annual/Cumulative Production vs. Time graph is similar to the 

Annual/Cumulative Production vs. Cumulative Production; the two appear the same because the same production data is being fit to a different x-axis scale. The team was able to fit both models with the same equation (10).  The Annual/Cumulative vs. Cumulative plot was also fit with a decaying exponential function of the form:
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The first form of the graph is found in Figure 11, and the second is found in Figure 12.  The first form seems to be a better fit for the later data points.  The exponentially decaying function was poor model at later years because it approached zero faster than the data points.  The inverse function was an excellent model for the general trend of the data, with small deviations toward the center of the graph.
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Figure 11: Nonlinear Model for P/Q vs. T for World with Inverse Function - Annual production over cumulative production is plotted against time for the world data set using the non-linear model given in Equation (10)
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Figure 12: Nonlinear Model for P/Q vs. T for World with Exponential Decay - Annual production over cumulative production is plotted against time for the world data set using the non-linear model given in Equation (11)

3.1.2.2 North Dakota

The team graphed the same four parametric families of graphs for the North Dakota data as with the world data:

· Annual Production vs. Cumulative Production

· Annual Production/Cumulative Production vs. Cumulative Production

· Annual Production vs. Time

· Annual/Cumulative Production vs. Time

The curves were fit using different nonlinear models. The first model could be represented with a transformed exponential decay function. The data implies that the oil production in North Dakota has already reached its peak, so the team was reasonably sure that Equation 12 would predict North Dakota's future oil production. The graph of this model shows a close fit shown in Figure 13.
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The second model represented an exponential decay function, as shown in Figure 14. This data looks less widespread than the data in the previous model, and the fitted line better represents the trend of the data, with the exception of the initial values in the set. Equation 12 is derived from Equation 13.
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The plot of this graph is similar to the first model but the parameters are different. Equation 13 represents a simple exponential decay function. This model was used because it best followed the trend of the plot of Annual/Cumulative Production vs. Cumulative Production.

Figure 15 is a production versus time curve, modeling the monthly data using a quadratic equation (Equation 14). The curve approximates the trend of the production of data, but results in high residuals. 
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(14)

To fit the data more closely, the team used a combined sine/cosine curve (Equation 15). This simply allows for the data to be described more closely, instead of with a general trend (Figure 16): 
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The last model looks similar to the second in that it should graph using the same form of the function. Again, R would not fit the line using the same function, so the team used an inverse function of time to fit the data (Equation 16). Figure 17 shows the fit for this curve is reasonably good with small differences in the center of the graph.
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Figure 13: Annual vs. Cumulative Production for North Dakota - Annual production is plotted versus cumulative production for the North Dakota data set using then non-linear model given in Equation (12) and the end of the curve is plotted using the predict function in R
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Figure 14: Annual/Cumulative Production vs. Cumulative Production - Annual production over cumulative production is plotted versus cumulative production for the North Dakota data set using the non-linear model using an Equation (13)
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Figure 15: Monthly Production vs. Time for North Dakotan - Monthly production is plotted versus time for the North Dakota data set using the non-linear model using an Equation (14)
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Figure 16: Fitted Production Curve and Prediction for North Dakota - Cumulative production is plotted versus time for the North Dakota data set using the non-linear model using an Equation (15)
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Figure 17: Annual/ Cumulative Production vs. Time for North Dakota – Annual production over cumulative production is plotted versus time for the North Dakota data set using the non-linear model using an Equation (16)

3.2 Simulation

The simulation will start by creating an artificial world in the unit square where the wells’ location will be specified by random x and y points between 0 and 1. This world may easily be scaled in the future. Each well is assumed to be circular and will be assigned a random diameter. The amount of oil in each of the well will be determined using a defined function dependent on the diameter and can be changed to fit the needs of the user. This information will then be saved in a matrix for future reference.

After the world is created, the simulation will begin to drill using a drilling function. The drilling function will determine how many drills to drill per time step and can be changed to fit the user’s preference. During each drill, the simulation will check if the drill has hit a well by checking the distance between the point and the radius of each well. If it hits, it will check whether that well has already been found. It will ignore the hit if the well has already been found. 

The extraction process will start for each well that has been found. The nature of the oil production was given to the team by the client and is shown in Figure 18. The rate of production for the beginning of the life of the well will be linear followed by a constant maximum rate and will then decay exponentially. The area under the curve is the amount of oil extracted. For each time step, the simulation will determine which extraction process the well is in and find the area accordingly. The extraction functions are defined and can also be changed by the user. R does not do integration, therefore the team created a function to calculate the area for the first and second extractions. In the case that the extraction process is in its decaying phase, the team used the upper Riemann’s sum (see Glossary) to estimate the production. The simulation will continue to extract from the well as long as it has not reached the limit specified by the user. In the real world, not all oil is pumped from an oil well, because the cost of extraction will eventually exceed the profits from the sale of the oil. The simulation will stop when a specified percentage of the total oil in the world has been extracted. 

The pseudo-code for the basic simulation can be found in Appendix A.


[image: image55]
Figure 18: Oil Production Behavior for Simulation – For the simulation, oil will be extracted using three different functions depending on the phase of the oil life cycle

4. Results

4.1 World Data

4.1.1 Linear Models

Linear models fit the world data set accurately. The residuals were small and the 
[image: image56.wmf]2
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 values were remarkably close to 1. Originally, fitting the data for Annual Production vs. Time with one curve gave fairly good results, but it did not account for the dip in the data around 1980. Fitting the data with two curves and combining them with an indicator function produced a closer fit and a better
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value of .987. The two-curve fit is a good model for fitting the current data, but bad at predicting future trends.  Fitting the Annual/Cumulative Production vs. Cumulative Production with a simple inverse function gave good results for the
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 and residuals, but better results could be found by modifying the power of the function.  Again, future prediction is compromised when complicating the model.    

Finding peak oil proved to be difficult since the data showed no signs of decline.  Therefore, there is no solution to the amount of oil remaining in the world based upon the current data set. The linear methods give little to future oil reserve predictions and are only useful to fit current data points.  

4.1.2 Nonlinear Models

Nonlinear models were used to fit the points of four different representations of the data.  The Annual Production vs. Time and Annual Production vs. Cumulative Production graphs were fit with a Gaussian distribution, where the coefficients were determined using a non-linear regression by R. There was no decline in the data, so several maximums in the Gaussian were chosen based upon previous research. The R predict function was used to complete the Gaussian curves. Different peak production points gave slightly different plots, but the results from the chosen maximums indicate that the world oil reserves will diminish by the end of the century.   Peak oil production has not been encountered yet for the world reserves, so the team’s total oil predictions are speculative.

The Annual/Cumulative Production vs. Time and Annual/Cumulative Production vs. Cumulative Production were fit with inverse and decaying exponential models, where R nonlinearly determined the coefficients of the model.  The graphs were fit well, and no predictions were needed based upon the current trends in the data.  The Annual/Cumulative Production will continue to decline towards zero because the cumulative production of oil will increase while annual production becomes an ever smaller portion of the total.  

The nonlinear models gave better results for future oil reserve predictions, but did not model the current data nearly as well as the linear methods. Depending on the objective of the reader, either model may be considered superior to the other. Without knowledge of peak oil production, the total world oil reserves are difficult to predict based on the methods the team used.

4.2 North Dakota Data

4.2.1 Linear Models

The linear models of the North Dakota dataset were fit with an 
[image: image59.wmf]2

R

value of 0.7384, a far cry from the 0.987 
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 value obtained with the world data set. The problem with linear models was that since they modeled the data well, they were not good at predicting future oil production. This was because the equations for these models were long and complicated (in order to get the models to fit the data well), so when the equations were used to predict the data, the result was not the desired decay curve. The dataset was also broken up into subsets and analyzed separately, but the results were still not desirable. The 
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value of the “noisiest” subset was no better than the 
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value of the entire data set.

4.2.2 Nonlinear Models

The model of annual production versus cumulative production gave the team the best prediction of the total amount of oil that will be produced in North Dakota (about 2.5 billion barrels, bbl, Figure 13). However, the model is not without flaw. The primary error is that the curve never approaches the highest point on the plot. As a result, to use model to determine the maximum value of annual production versus cumulative production would be inaccurate. The second problem with the model is that the curve never reaches zero because the function is exponential. In spite of this inaccurate portrayal, it is safe to assume that production will cease when the curve nears zero. Using this assumption, the team estimates that approximately 1 bbl extractable oil remains in North Dakota. 

The models that the team used for annual production versus time produced varied results. The curve that was most accepted was the quadratic model; instead of fitting the data, this curve produced an approximate prediction at the expense of high residuals. This model predicts that the oil production in North Dakota will cease before the year 2040. A different model that fit the data well, but produced questionable predictions was the sinusoidal model. The resultant residuals were satisfactory in describing the correlation between time and production. 

The two most useful families of equations were Annual vs. Cumulative Production, and Annual Production vs. Time. The Annual vs. Cumulative curve was the most satisfactory in predicting the production trends in the area, while the Production vs. Time curve was the best fit for the data. 

The North Dakota model of Annual production/ Cumulative production vs. Time did not require prediction in R to anticipate the data trend. As stated in the world results, the annual production becomes a smaller component of the cumulative production as time progresses. The main purpose that this model served was simply to provide another viewpoint of the data.

Qualitatively, the team estimates that peak oil production for North Dakota was approximately in the year 1990 (See Figures 7, 15, and 16). Both linear and non-linear models agree with this conclusion.

4.3 Parametric Families of Equations

From our previous experience of fitting curves to the datasets provided by the client, the team developed several parametric families of equations for the data produced by the simulation. For the plot of annual production versus time, the team used the function:
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where 
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 is the y-intercept, 
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 is the exponential decay rate, and 
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 is the peak of the curve. For the plot of annual production over cumulative production versus time, the equation,
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was used. This equation is a simple exponential decay function with parameters 
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 and 
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. An alternate parametric function that can be used for this plot is:
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This inverse function still fits the plot fairly well, but not as well as the exponential model. This is because the exponential curve declines more steeply from a higher initial value than the inverse function. For the plot of Annual/Cumulative Production vs. Cumulative Production, the team also used the exponential decay model from above (Equation 19). The plots were similar enough that it modeled both very well. Finally, for the plot of Annual Production vs. Cumulative Production, the team manipulated the parameters of the exponential decay function to get,
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and finally,
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For the simulation, the models will only work the majority of the time because the oil production simulation is random and the user needs to specify initial values for each of the parametric functions. Because of the random nature of the simulation, there exists a possibility that the data generated is so skewed that the parametric functions do not model the plots. 

4.4 Simulation

For the following simulation example, the following parameters were used:

· Amount of oil  = 1000 * diameter of the well

· Number of wells = 10

· Drill function = 3 + time
· 0% - 25% of oil extracted from each well is Extraction1 = 2 * time
· 26% - 75% of oil extracted from each well is Extraction2 = 2 * time of 25% oil extracted

· 75-95% of oil extracted from each well is Extraction3 = intercept*e-(.07)*time 

· The simulation will stop after 75% of the total oil is extracted

The simulation first creates a theoretical world where using the parameters that the user inputted. R randomly generates the location and diameter of the wells. For this example, Figure 19 shows where the size and location of the wells. After the simulation is performed, the final matrix of each well at each time step is shown in Appendix B. The appropriate non-linear models as stated in the previous section were then used to fit the data that the simulation returned all shown in Figures 20 to 23. Figure 20 shows the Production vs. Time using the non-linear function given in Equation (17).   The nonlinear Gaussian model fits the simulated data fairly well with only a few outlying points in the beginning of the graph.  Figure 21 is the Production/Cumulative Production vs. Time graph and Figure 22 is the Production/Cumulative Production vs. Cumulative Production are both fitted with the non-linear function given in Equation (18). The nonlinear decaying exponential is an excellent model of P/Q vs. Time, but not as good for P/Q vs. Q.  It does not capture the end points of the P/Q vs. Q. Finally, Figure 23 is the Production vs. Cumulative Production using the non-linear function given in Equation 22. This model is fair for P vs. Q, but there are many outlying points.
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Figure 19: Theoretical World for Sample Simulation – For the sample simulation, this is a graphical representation of a scaled down 2D world that R generated with random (x,y) coordinates for well location, and random diameter of the wells.
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Figure 20: Production vs. Time for Simulation – For the sample simulation, annual production is plotted against time using a Gaussian distribution using Equation (17)
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Figure 21: Production/Cumulative Production vs. Time for Simulation – For the sample simulation, annual production over cumulative production is plotted against time using an exponential decay model using Equation (18)
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Figure 22: Production/Cumulative Production vs. Cumulative Production for Simulation – For the sample simulation, annual production over cumulative production is plotted against cumulative production using an exponential decay function given in Equation (18)
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Figure 23: Production vs. Cumulative Production for Simulation – For the sample simulation, annual production is plotted against cumulative production using Equation (22)

4.5 Repeating Simulation

Multiple iterations of the simulation allow the team to better fit the simulated data. By running the simulation many times and finding average values for the data points, there is less of a chance to have skewed or outlying data caused by the random generation in the simulation. Overlaying the graphs of multiple simulations also gives the team a better understanding of the general trends of the data generated by the simulation.

The simulations for Production vs. Time and Annual/Cumulative Production vs. Time with both the inverse and exponential fit were each performed one hundred times. The averages of all the simulations at each time step were calculated, and then fit nonlinearly with a best-fit curve. The following three figures (Figures 24, 25, 26) depict the different repeated simulations.   
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Figure 24: Mean Production vs. Time for Multiple Simulations - For the sample simulation, annual production is plotted against time using a Gaussian distribution using Equation (17) 100 times
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Figure 25: Mean Production/Cumulative Production vs. Time for Multiple Simulations using Exponential Decay - Production/cumulative production is plotted vs. time using a decaying exponential function 100 times
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Figure 26: Mean Production/Cumulative Production vs. Time for Multiple Simulations using Inverse Function - Production/cumulative production is plotted vs. time using an inverse function 100 times

5. Conclusion & Future Directions

The results obtained from this project, shown in Appendix C, provided a good starting point for anyone who is interested in modeling the exploration, peaking, and decline of a nonrenewable resource, such as crude oil. The team used both linear and nonlinear regression to model patterns of oil production. These methods will be useful, not only for predicting oil production, but for any modeling problem. More work can be done with balancing predictive abilities and actual fit of the parametric families. Further, the simulation can be made more realistic by adding functions that emulate economic crises and technological advances such as war or economic depression. 

5.1 Lessons Learned

The six weeks of the Colorado School of Mines Mathematics field session allowed the team to experience a research and analytical environment that none of the group members had previously experienced. The session was not without its setbacks, as the team discovered early in the process of analyzing the data. 

Dr. Furrer, the client, proved to be an invaluable resource when problems with R were encountered. The nls function demands patience of the programmer because the time spent fitting the curves can be exasperating. Only time and experience will give the programmer a sense of the necessary parameters for entry into the nls function.

Complicated functions that fit the data well do not predict data well, as demonstrated with the sinusoidal North Dakota Production functions; an exchange of accuracy for general future behavior must be made in order to predict data. This information was useful for analysis of the simulation, as the same parametric families of equations were used to model the simulated trends. 

Glossary

Gaussian - 
normal distribution or a “Bell Curve” with the following probability density function:
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where ( is the mean and 
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 is the variance.  The following shows several different Gaussian distributions:
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Linear model – 
models of the form:

where the coefficients must be linear functions. The functions of x do not have to be linear functions.

lm - 
R function that is used to fit linear models

nls -  
R function that determines the nonlinear (weighted) least-squares estimates of the parameters of a nonlinear model
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Nonlinear model – 
models of the form:

where f  is a nonlinear function. There are no algebraic expressions for best-fitting parameters, and numerical optimization algorithms must be used.

Population mean - 
statistical average from entire population, not always obtainable.

R - 
a language and environment for statistical computing and graphics. R provides a wide variety of statistical (linear and nonlinear modeling, classical statistical tests, time-series analysis, classification, clustering) and graphical techniques, and is highly extensible.
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a measure of correlation between two variables for simple linear regression or 
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where ESS is the explained sum of squares, RSS is the residual sum of squares, and TSS is the total sum of squares.  
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 varies between 0 and 1, where better fits are closer to 1.

Residuals - 
observable estimate of the unobservable error
Riemann Sum - 
A method for estimating integrals 
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Sample mean - 
statistical average from a finite sample of a population
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Appendix A: Pseudo-code for Simulation

amtoil(a) returns the amount of oil per well using a given function dependent on 'a'

amtoil<-function(a) a*1000

world(a,b) creates our theoretical world, where 'a' is the number of wells, and 'b' is the degrees of freedom for a chi squared distribution used to find the diameter of the wells

world ← function(number of wells, degrees of freedom)

  {

    Pick points for number of wells.

    Pick diameter for each well.

    Find amount of oil with respect to the diameter.

    Save into matrix.

  }

drill(a,time) returns the number of drills per time step using the given function dependenton 'a'

drill ← function(constant, time) {time + constant}

extraction1(time) returns the rate of extraction for the first portion of the extraction process using the given function dependent on time

extraction1 ← function(time) {2*time }

There is no extraction2 function because it is a constant based upon extraction1

extraction3(time,a,b) returns the rate of extraction for the third portion of the extraction process using the given function dependent on time and 'a', and 'b'(default = .07)

extraction3 ← function(time, point a, rate of decay)

  {

    (point a) * exp (-rate of decay * time)

  }

area_ext1(base, height, previous area) returns the area under the curve for the extraction1 function, which gives the total oil production

area_ext1 ← function(b, h, prev_area) {(1/2)*b*h-prev_area}

check_iffound(index of well, discovery vector) returns a boolean indicating whether the index of the well is already in the discovery vector

check_iffound ← function(well_index, discovered_matrix)

  {

    Checks discovered_matrix to see if well_index is present.

    If present: returns TRUE.

    Else: returns FALSE.

  }

check_radius(x,y, wells information matrix, discovery vector, time vector, current time) checks if the given point (x,y) is within the radius of any of the oil wells given in the wells information matrix and calls check_iffound.  If check_iffound returns false, the well has not been found and the index of the well is placed in the discovery vector and the current time is placed into the time vector

check_radius ← function(x value, y value, oil matrix, discovered_vector, time_vector, time)

  {

    Check distance of (x, y) and compare to the radii/position of oil wells.

    If the distance is less than the radius of a particular well: check to see if well is found.

    If check_iffound = TRUE meaning well has already been found:

    Consider the drill point to be a miss.

    Else

      Record index of well in discovered_vector.

      Record time discovered in time_vector.


  }

simulation() runs the actual simulation and displays a Final Matrix with the oil production of each well during each time step

simulation ← function()

  {

    Pick number of wells.

    Pick degrees of freedom.

    Indicate oil column in oil matrix.

    Set oil found = 0

    Set time = 0

    Set discovered_vector to empty vector.

    Set time_vector to empty.

    Set Final Matrix to empty.

    Set enough_extraction to empty vector.

    Create world using: world( number of wells, degrees of freedom)

    Sum oil in oil matrix, save as Total Oil.

    Set a, b, c percentages of Total Oil for extraction functions.

    Set d to percentage of Total Oil that simulation should run up to.

    while(oil found ≤ d * Total Oil)

      {

        Pick number of (x, y) points according to drill function.

        Call check_radius for each (x, y)

        For each well found

          If Oil found ≤ a*Total Oil && enough_extraction for that well == 0

            Final Oil[index] = extraction1(time - time found)

            If(Final Oil[index] > c*Total Oil)

              Set enough_extraction to 1

          Else If Oil found ≤ b*Total Oil && enough_extraction for well == 0

            Final Oil[Index] = Same extraction rate as time - 1

            If(Final Oil[index] > c*Total Oil)

              Set enough_extraction to 1

          Else If enough_extraction for well == 0

            Final Oil[index] = extraction3(time - time found, intercept)

            If(Final Oil[index] > c*Total Oil)

              Set enough_extraction to 1

      }

    Oil Found = sum ( Total Final Oil Matrix)

    time = time + 1

    Display Final Oil Matrix

  } 

Appendix B: Final Matrix for Sample Simulation
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*Note: The rows are the wells and the columns are the time steps. The information in each entry is the production of that well for that time step.

Appendix C: Final Results Table
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Annual Production/Cumulative vs. Cumulative for World (1918-2004)
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