[image: image1.jpg]

Chemistry Solver Web Application

Final Report
Authors: Canh Le, Nicholas Darschewski, Sean Beary

Version: 1.0
Status: Release
Last Modified: June 20, 2006
TABLES OF CONTENTS
31
Abstract

42
Project Overview

52.1 Purpose

52.2 Scope

52.3 Glossary and Definitions

52.4 References

63
Requirements

63.1 Functional Requirements

93.2 Non-Functional Requirements

104
Design

104.1
High-Level Design

124.1.1
Chemistry Solver Applet Classes

134.1.2
Chemistry Solver Object Model

144.1.3
Data Store

144.1.4
Testing

154.2 Significant Algorithms

154.2.1
Row Echelon Form

154.2.1.1 Purpose

154.2.1.2 Overview

164.2.1.3 Pseudocode

174.2.2
Balancing Equation

174.2.2.1 Purpose

174.2.2.2 Overview

184.2.2.3 Pseudocode

204.3
Interface Design

204.3.1
Web Common Look and Feel

204.3.2
HTML Pages

214.3.3
Application

225
Testing

225.1 Strategy

225.2 Results

246
Conclusion

246.1 Results

246.2 Lessons Learned

246.2.1 Source Control

246.2.2 Java Swing

25Appendix A: Technology Selection Background

26Appendix B: Installation, Folders and Files Description

261.
Website Installation

262.
Folders and Files Description

1
Abstract
Chemistry Solver ’06 is an application that will allow the user to input an unbalanced chemical equation and output the correct balanced equation, if one or more equations are available. Our group has been asked to convert a legacy program originally designed to perform this task that is not fully functional. The new application will be web-based, instead of an executable application. In order to balance the chemical equations, this application will need to be able to count the charges of reactants and products, and deal with them appropriately. It must also have a data store to evaluate the different chemical elements.

This task will be completed using Java and output as Java Applet, and an intuitive user interface. The goal of this project is to create a functional web application, which will allow chemistry enthusiasts from around the world to quickly balance complex chemical equations.
2
Project Overview

The Chemistry Solver Application (also referred to in this document as “ChemSolver”) is used to provide a balanced chemical equation, given specified reactants and products. It is used to assist chemistry students, enthusiasts and professionals in solving chemical problems.

An application to perform this function was developed 10 years ago during CSM Field Session. This application was written in Pascal and the domain expertise in this area has long departed this school. The program contains a defect that is unable to be solved because the expertise in Pascal is unavailable.

In addition, the existing application requires users to download the executable before using it. An executable program is a problem because there is substantial distrust of downloading files that may contain malicious data (e.g. viruses, etc). The new version of the application will be run as a web application, readily accessible to the world.
The ChemSolver Application is a web-based application that balances chemical equations. After evaluating a number of different web technologies, the team determined that the use of JavaServer Pages and Servlets would be the best choice.

However a number of constraints were later proposed by the client and the ability to set up the deployment environment at CSM. The general purpose web server hosted by the Colorado School of Mines does not support Microsoft web technologies or Java server-based web technologies. For more information on how this decision was reached and the circumstances behind the decision, please read “Appendix A: Technology Selection Background.”

After rethinking our technology choice and after evaluating several possibilities with the new constraints, the creation of a Java Applet was chosen. A Java Applet requires virtually no special server-side software and instead relies on the use of a client-installed plug-in. While one of our design goals was to minimize the need to install executables, the Java Runtime Environment (JRE) is freely available from a trusted vendor (Sun Microsystems) and is commonly available in many operating environments already.

Applets do have some issues that the team will need to be cognizant of when designing this application. Applets tend to take a significant amount of time to load and appear to run very slowly. Where possible, the group will try to optimize the performance of the applet.

This application also requires the use of a data store in order to validate that the elements specified by the user actually exist. Originally a database was going to be used to perform this task. Since the application is an applet, the goal is to store a Properties file containing element data on the client’s machine. Since the application will need to perform file I/O on the client machine, the applet must be signed.

The use of a Java Applet also allows us to closely mimic the existing behavior of the software. When the client was asked if he wanted interface improvements, he stated that the interface was already a good one and did not see the need for further enhancement.
2.1 Purpose

The purpose of this document is to give an overview of the project, the design and its requirements.
2.2 Scope

The scope of this document is limited to the ChemSolver application.
2.3 Glossary and Definitions

	Term
	Definition

	Applet
	A Java web application that runs within the client’s web browser using the Java Runtime Environment.

	JRE
	Java Runtime Environment. A Java Virtual Machine on a client’s computer that is invoked by the web browser that the applet will run within.

	XML
	Extensible Markup Language

2.4 References

	Number
	Reference
	URL

	1
	Chem Solver Web Application Requirements Document
	TBD

3
Requirements
3.1 Functional Requirements
	ID: 3-01
	Chem Solver Usage

	REQ:
	The Chem Solver Application MUST balance chemical equations, given both user specified reactants and products and output the balanced equation appropriately.

	RATIONALE:
	The use of the application is to balance chemical equations using specified reactants and products.

	VERIFICATION:
	Given an equation with a known solution, enter the appropriate reactants and products into the application and verify that the solution from the application matches the known solution.

	ID: 3-02
	Chem Solver Input Format

	REQ:
	The Chem Solver Application MUST process the input according to a documented, standard format.

	RATIONALE:
	Specifying chemical elements without the use of subscripts and other characters is burdensome to indicate such things as charge and hydrates are an issue. A document that outlines the input format for entering chemical elements is in developments.

	VERIFICATION:
	Enter various different input combinations that conform to the format and ensure that the Chem Solver handles them appropriately.

	ID: 3-03
	Chem Solver Input – Compounds/Hydrates

	REQ:
	The Chem Solver Application MUST be able to process user input that incorporates compounds and/or hydrates.

	RATIONALE:
	When the user specifies the elements that they wish to balance, it may incorporate compounds or hydrates.

	VERIFICATION:
	Enter an input formula, with a known solution, that contains a hydrate and ensure the application functions appropriately.

	ID: 3-04
	Chem Solver Input – Ions

	REQ:
	The Chem Solver Application MUST be able to process user input that incorporates ions.

	RATIONALE:
	When the user specifies the elements that they wish to balance, it may incorporate ions.

	VERIFICATION:
	Enter an input formula, with a known solution, that contains ion(s) and ensure the application functions appropriately.

	ID: 3-05
	Chem Solver Input – Parentheses

	REQ:
	The Chem Solver Application MUST be able to process any user specified parentheses in the form “()”, “[]”, and “{}” according to the general rules of Chemistry.

	RATIONALE:
	The user of the application may choose to include parentheses in their chemical equation. Where the parentheses occur can completely change the meaning of the equation.

	VERIFICATION:
	Enter each type of parentheses for a given chemical equation, with a known solution, and validate that the output from the application matches the expected result.

	ID: 3-06
	Chem Solver Input – Counting Charges

	REQ:
	The Chem Solver Application MUST be able to properly count the charges for each of the elements, in order to provide valid input into the matrix.

	RATIONALE:
	In order to solve the system of equations to balance the chemical equation, the charges for each of the input elements must be properly counted.

	VERIFICATION:
	To ensure that it works in both cases, an input equation that contains parentheses and one that does not contain parentheses should be used. Debug output, which may be turned on or off, will verify that this is occurring.

	ID: 3-07
	Chem Solver Processing – Fraction Form

	REQ:
	The Chem Solver Application MUST leave processing data in fraction form.

	RATIONALE:
	In order to provide integer output of the balanced equation, the solution to the system of equations used to find the balanced equation must remain in fraction form because once decimal form is used, it is improbable that the fraction can be regenerated.

	VERIFICATION:
	Debug output, which may be turned on or off, will be used to verify that through each step of processing that the data is retained in fraction form.

	ID: 3-08
	Chem Solver Output – Lowest Coefficient

	REQ:
	The Chem Solver Application MUST display the balanced equation(s) (if applicable) with the lowest coefficient possible.

	RATIONALE:
	Each of the output coefficients should be in the smallest integer, not divisible by all other coefficients.

	VERIFICATION:
	Test an equation with a known solution and ensure that the coefficients match. The reactants may be multiplied by a common number and still the coefficients should match.

	ID: 3-09
	Chem Solver Output – Chemical Properties

	REQ:
	The Chem Solver Application MAY display the properties of an element (e.g. charge, atomic weight, etc)

	RATIONALE:
	This would provide useful information to the user.

	VERIFICATION:
	Verify, if this requirement is satisfied, that the output contains the chemical properties.

	ID: 3-10
	Chem Solver Processing – Element Verification

	REQ:
	The Chem Solver Application MUST verify that the element(s) specified by the user exist.

	RATIONALE:
	In order to ensure the input is valid, the element(s) specified must exist.

	VERIFICATION:
	Input an invalid element and ensure that an error message is generated.

	ID: 3-11
	Chem Solver Error Handling – Malformed Equation

	REQ:
	The Chem Solver Application MUST provide an appropriate error messages for invalid user input.

	RATIONALE:
	The user of the application may enter input that cannot be processed by the application.

	VERIFICATION:
	Enter an equation that is not within the specified format and verify that the application provides an error message.

	ID: 3-12
	Chem Solver Error Handling – Invalid Element(s)

	REQ:
	The Chem Solver Application MUST provide an appropriate error message for invalid elements specified by the user.

	RATIONALE:
	The user of the application may enter an element that does not exist.

	VERIFICATION:
	Enter an element that does not exist and verify that the application provides an error message.

	ID: 3-13
	Chem Solver Error Handling – Invalid Equation

	REQ:
	The Chem Solver Application MUST verify each element is in the reactants and the products.

	RATIONALE:
	The user of the application may enter reactants and products that do not form a valid chemical equation.

	VERIFICATION:
	Enter an equation that does not contain reactants and products that form a valid chemical equation, and verify that the application provides an error message.

3.2 Non-Functional Requirements

	ID: 4-01
	Ongoing Maintainability

	REQ:
	The Chem Solver MUST be written in a language that allows for the source code to be maintainable in the future.

	RATIONALE:
	The client requested that he be able to make modifications and enhancements to the source code after our implementation.

	ID: 4-02
	Source Code Accessibility

	REQ:
	The client MUST receive a hardcopy and softcopy of the source code.

	RATIONALE:
	The client requested that he receive a hardcopy and softcopy of the source code.

	ID: 4-03
	Web-Based Implementation

	REQ:
	The Chem Solver MUST be a web-based application.

	RATIONALE:
	The client requested that the application be web-based.

	ID: 4-04
	Hosting

	REQ:
	The client MUST provide a web server to host the application on.

	RATIONALE:
	Since the client requested that the application be web-based, they must provide a deployment server for the application.

	ID: 4-05
	Persistent Data Store

	REQ:
	The Chem Solver MUST utilize a persistent data store that contains the chemical elements and their properties.

	RATIONALE:
	To verify that elements exist and for displaying the output, a persistent store should be used to retrieve this information from.

4
Design

4.1 High-Level Design

[image: image2.emf]cd SampleDesignBasics

 Web Browser

Figure 1: Conceptual High-Level Design
The basic design is that a main HTML page contains a “Common Look and Feel” and the applet created for the ChemSolver application. The applet will be referenced in the HTML file as a Java Archive File (JAR) that contains all of the classes and dependencies necessary for the applet to run.

After the HTML file has loaded, the web browser will attempt to load the applet. The ChemSolver design does not require the use of Java 1.5 features, so for ease of compatibility with JRE environments, Java 1.4 will be used as the deployment environment. If the applet cannot be run, a link to the JRE download site hosted by Sun will be provided.

The sequence of events that occur when a user is interacting with the application is as follows:

[image: image3.emf]sd ChemSolverSequence

User

ChemSolverApplet ChemSolverBalancer

1. Prompt User for Number of Chemicals & Rxn Type

2. Provide Input (# of Chemicals + Reaction Type)

3. Prompt User to Enter Chemicals

4. Provide Input (Chemicals)

5. Find Balanced Equation(s) (Chemicals)

6. Return Balanced Equations (if possible)

7. Display Output

 Figure 2: Chemistry Solver UML Sequence Diagram
1.) Once the applet has loaded, the ChemSolverAppletFrame will be launched and the user will be prompted to enter how many chemicals will be present in the balanced equation they wish to retrieve. The user also specifies if the reaction is acidic (the H+ ion is added), basic (the OH- ion is automatically added) or neutral/non-aqueous.

2.) The user will enter the input required by the program and will move on to the next step. If any fields were left blank and the user tries to move on to the next step, an error message will be displayed.

3.) Based on the number of chemicals specified in the previous step, the same number of editable text fields will appear on the screen. In the case of the reaction occurring in an acidic or basic solution, an additional text field containing the added ion will appear.

4.) After the text fields are displayed, the user must enter values for each of the empty text fields. Additionally a chemical element (e.g. Oxygen – O) must appear at least twice. This ensures that the element appears on both sides of the chemical equation. The user does not specify which chemicals are products or reactants. This is determined by the matrix process utilized in order to determine the equation.

5.) Once the user has provided the chemicals, the ChemSolverAppletFrame will validate that each of the elements exist (by comparing the element to a periodic table stored in XML) and that each element appears in at least two chemicals. If the input is invalid, an error message will be displayed to the user and they will have to re-enter the data. If the input is valid, the chemicals will be passed to the ChemSolverBalancer in order to determine if a balanced chemical equation can be derived from the chemicals provided.

6.) The ChemSolverBalancer will construct a matrix that consists of the number of times the element occurs in the input chemicals and the charge of each of the input chemicals. By reducing this matrix to a reduced row echelon form, a balanced chemical equation can be derived. Any equations that can be derived from the input will be passed back to the ChemSolverAppletFrame.

7.) The ChemSolverAppletFrame will display the results. If no equations were possible, then a message stating “No Balanced Equations for Input Were Available” will be displayed. Otherwise the equations will be displayed within the applet’s main content pane.

The user may now elect to return to the start screen of the applet, or close the applet.

4.1.1 Chemistry Solver Applet Classes
The primary classes that will be used in the Chemistry Solver Web Application will be ChemSolverApplet, ChemSolverAppletFrame, and ChemSolverBalancer.

The ChemSolverApplet class will extend the java.applet.Applet class and provide all of the functionality for initializing, starting, stopping and destroying the applet.

The ChemSolverAppletFrame class will provide the graphical interface capabilities required within the applet. Additionally it will provide the event handling and performing the element verification tasks required in this application.

The ChemicalMatrixGenerator, RowEchelonTransform and CoefficientNumberExtrator classes contains all of the logic and processing necessary to generate the matrix containing chemical charges and element occurrences in each chemical, reduce this matrix to a reduced row echelon form, and put together the equations (if any were found) that contain the chemicals specified.
4.1.2 Chemistry Solver Object Model

[image: image4.emf]cd ChemicalObjectFramework

ChemicalEntity

- charge: int

- descString: String

- name: String

+ ChemicalEntity()

+ getCharge() : int

+ getDescription() : String

+ setCharge(int) : void

+ setDescription(String) : void

+ setName(String) : void

ChemicalElement

- atomicWeight: double

- periodicNumber: int

- symbol: String

+ getAtomicWeight() : double

+ getPeriodicNumber() : int

+ getSymbol() : String

+ setAtomicWeight(double) : void

+ setPeriodicNumber(int) : void

+ setSymbol(String) : void

ChemicalCompound

- elements: ChemicalElement (Array)

+ getElements() : ChemicalElement[]

+ setElements(ChemicalElement) : void

ChemicalHydrate

- elements: ChemicalElement (Array)

+ getElements() : ChemicalElement[]

Figure 3: Chemical Object Model UML Class Diagram

When designing the Chemistry Solver system, it made sense to store and process chemical information within objects that apply to the situation, mimicking parts of the chemistry thought process. For this reason, a basic object model will be used when dealing with the chemical input for processing.
The ChemicalEntity superclass defines properties that are common to every ChemicalEntity, mainly a charge (e.g. -2), a description of what the chemical entity is, and the name of the entity.

A ChemicalElement, a derivative of ChemicalEntity, contains additional properties. These properties include the atomic weight of the element, the periodic number that element appears on the table, and the symbol of the element (e.g. Sodium = Na).

A ChemicalCompound is also a derivative of ChemicalEntity, but is comprised of one or more ChemicalElements. For example, a compound may be sodium chloride (e.g. NaCl).

A ChemicalHydrate is also a derivative of ChemicalEntity and is also comprised of one or more chemical elements.

4.1.3 Data Store

The applet must check if the chemicals specified by the user are valid. This must be handled on an element-by-element basis within each chemical. For example, if a user enters “KePO4” they would receive an error because “Ke” is not a valid element.

In order to do perform this validation, a simplified periodic table will be used. This data store will contain definitions for each element in the periodic table. As an applet, retrieving this information from a database or other persistent store on the server side is out of the question.

A properties file, accessed through the use of a ResourceBundle, containing each element in the periodic table and other pertinent data about the element will be stored. This file will be a key-value pair where the key is the symbol and the value is the name. If when a retrieval from the bundle is performed with a given key and a null value is returned, the element is known to not exist.

An identical means will be utilized for storing the weights of each element, where a Properties file accessed through a ResourceBundle, contains a key-value pair. The key is the symbol (e.g. O) and the value is the weight.
4.1.4 Testing

Since the applet may be used in many different web browsers, the application will be tested with all popular browsers (e.g. Mozilla Firefox, Microsoft Internet Explorer, and Netscape Navigator) on a myriad of platforms (e.g. Windows, Linux and Sun Solaris, Mac OS X).
4.2 Significant Algorithms
In order to construct a program, many components need to be incorporated. This section describes some of the important aspects of this application that needed to be constructed.

4.2.1 Row Echelon Form
4.2.1.1 Purpose

This section explains what Row Echelon Form is and the importance of using Row Echelon Form for solving sets of linear equations.
4.2.1.2 Overview

One of the easiest ways to solve sets of linear equations is through matrices. Since the chemicals that are input from the user will be put into a matrix that counts the number of elements, the best way to find the coefficient for each chemical is through transforming a matrix into Row Echelon Form. Row Echelon Form is a matrix in which each row is comprised of zeros until the first non-zero element, which must be a one. For example:

[[1 2 3 | 4]

[0 1 5 | 8]

[0 0 1 | 7]]

Example 1: Reduced Row Echelon form example
The above figure is an example of a matrix in Row Echelon Form. The lines after the third column are there to show that the forth column is the solution to the matrix however it helps to remind the user to do row operations to the solution as well A Row Echelon Form will be constructed by using loops that will use matrix row operations to sort the matrix. Matrix row operations consist of switching two rows, multiplying/dividing a row by a constant and adding/subtracting two rows together which results in a replacement of one of the rows. For example in Example 1 if one switched rows 2 and 3 the resulting matrix will be

[[1 2 3 | 4]

[0 0 1 | 7]

[0 1 5 |8]]
Multiplying row 1 in Example 1 by 5 results in

[[5 10 15 | 20]

[0 1 5 | 8]

[0 0 1 | 7]]

Finally, in Example 1 adding rows 2 and 3 together resulting in a new row 3 results in

[[1 2 3 | 4]

[0 1 5 | 8]

[0 1 6 | 15]]

The importance of using Row Echelon Form in order to solve linear equations is that it simplifies the equations so that the solution is easily obtainable. Solutions to a matrix in Row Echelon Form are obtained by having a constant matrix after the Row Echelon Form Matrix. For example, using Figure 1 will result in a matrix setup that looks like this:

[[1 2 3 | 4] [[a] [[0]

[0 1 5 | 8] [b] == [0]

[0 0 1 | 7]] [c]] [0]]

Equal to:

[[1 2 3] [[a] [[4]

[0 1 5] [b] == [8]

[0 0 1] [c]] [7]]

which means that c=7, b+5*c=8, and a+2*b+3*c=4.

Thus working backwards give the solution c=7, b=-27, and a = 37.

However, this will be discussed in the balancing equation algorithm.

4.2.1.3 Pseudocode

Run loop to go through all the columns of the matrix

 count=0

 run loop to search through the rows of the matrix
The first part of this program sorts the matrix into a form seen in Figure one in which zeros are to the left of the first value in a row
if value at row and column is non-zero

swap current row with row at count increment count by 1
This section of the program will use matrix row operations 2 and 3 multiplying/dividing and adding/subtracting resulting in a form similar to Figure 1

Run different loop incremented one higher than previous loop

Multiply two different rows by different constants to make their values equal for the column

Subtract the two rows replacing the row with a higher row value
Gets matrix into echelon form by making all first non-zero entries equal to one
loop from first row to last row

loop from column equal to row working on from above to last row

get value in current row and column and divide that across the row
4.2.2 Balancing Equation
4.2.2.1 Purpose

This section will examine how to get solutions once in the matrix is in row echelon form.
4.2.2.2 Overview

As shown earlier, once a matrix is in Row Echelon Form it is then simple substitutions in order to solve the system of equations. The easiest form to solve for is when there are no solutions. This is known because the matrix looks like this.

[[1 2 3 | 0]

 [0 1 5 | 0]

 [0 0 1 | 0]]

The next form is one solution when there is one solution which is solved like this:

[[1 2 3 | 4] [[a] [[0]

 [0 1 5 | 8] [b] == [0]

 [0 0 1 | 7]] [c]] [0]]

Equal to:
[[1 2 3] [[a] [[4]

 [0 1 5] [b] == [8]

 [0 0 1] [c]] [7]]

which means that c=7, b+5*c=8, and a+2*b+3*c=4.

Thus working backwards give the solution c=7, b=-27, and a = 37.

The final form is when there are multiple solutions to the equations

[[1 2 0] [[a] [[4]

 [0 0 1] [b] == [8]

 [0 0 0] [c]] [0]]

In this example, c=8 and a+2*b=4 so there are infinitely many values of a and b that will make this equation valid.
4.2.2.3 Pseudocode

Reduced matrix to Reduced Row Echelon Form

Start loop that begins at the second column of the matrix and goes to the second to last column

loop starting at first row and going to last row

if(row equals column)

 don’t do anything

 else

get value at current row and column

multiply a negative of that value across the row of the column you are on.

Here get first loop value

add row of the first loop to row of the second loop replacing second loops row.

Run through different possibilities for matrix setups

NO SOLUTIONS

loop starting at first and going to last row

 if all values in the last column are zero

 NO SOLUTIONS AVAILABLE

//ONE SOLUTION

loop first row to last row

 loop column = row to last column

if only two values per row

 ONE SOLUTION

 A=row one last column

 B=row two last column…

 X=last row, last column

//MULTIPLE SOLUTIONS

 else

 loop first row to last row

 loop column = row to last column

//These are known values they have to equal this

if only two values per row

give values to these constants

//These are values that could change

Else
Use lowest value possible (e.g. 1) as first constant and work through the rest of the non constant values
4.3 Interface Design
[image: image5.jpg]

4.3.1 Web Common Look and Feel
The ChemSolver is a web-based application, thus we need a web interface that allow users to utilize the application. The interface must be easy to navigate while remaining user-friendly.

4.3.2 HTML Pages

The web interface will have a main page that houses the Java applet, as well as other pages such as the Contact Us, Instruction, and Extras (if we have time to implement.) All of the pages will be created from a single web template.

The interface was designed using Adobe Photoshop, and is designed so that more buttons can be added later. As for now, there will be four buttons on the interface:

1. HOME button will take the user back to the main page.

2. CONTACT US will lead users to a page contain contact information such as name, email address, and phone number.

3. INSTRUCTION displays the instructions needed to use the application.

4. EXTRAS contain extra stuffs, such as useful chemistry links, periodic table and others.

The Photoshop file was then exported into a HTML Template, where the blank space is the “editable region” that allows user to add their content without affecting any other areas.

[image: image6.jpg]ClemSalyer

Jiva application

4.3.3 Application

The main page will house the Java Applet, which will takes all user inputs and outputs the correct balanced equation(s), if available. Our client, Dr. Dickerhoof, wants the interface of the previous Pascal program, and therefore, we will be implementing the Java applet with a similar interface.
5
Testing
5.1 Strategy

In order to minimize the level of effort and redundancy required to test the application, the group has devised a strategy designed to limit the amount of test iterations and develop quality code.

Each developer is asked to create a set of JUnit tests for their portion of the application. This allows each “unit” of code to be tested in isolation to ensure it was functional. Once the unit tests for the developer’s portion of the code passed, it was safe to begin integration. This minimizes the possibility of not being able to catch bugs and lengthy integration cycles because a developer’s code was not up to expectations. Unit tests for the UI components (e.g. Panels and Dialogs) were not created because of the inability to access the user-entry dependent interface.
After all necessary code was integrated successfully, system-level testing is ready to begin. System testing solely concentrates on testing the application from a client’s perspective, otherwise known as a black-box approach. The client provided a set of 20+ chemical reactions in order for the team to test with. Since an application to perform this function already exists, the team can compare the output of the application under development against an application that has been under years of test.
5.2 Results
A total of 21 unit tests were created for the core functionality of the ChemSolver application.

System testing was performed in a series of iterations. During each iteration, each test was run, and any defects or issues would be reported to the team. After all of the defects were resolved, the program would be placed under system test again. Our approach allowed us to make steady progress during system test, eliminating all problems after the fourth iteration.

The following graph shows the percentage of tests that passed or failed in each iteration:

[image: image7.emf]0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6*

Passed

Failed

6
Conclusion

6.1 Results
The ChemSolver web application contains all of the functionality of the previous Pascal application and properly processes parentheses. The application has been rigorously tested and is ready for deployment on the CSM Chemistry website.

6.2 Lessons Learned

6.2.1 Source Control

The use of a source control system (e.g. Subversion, CVS) would have greatly improved the efficiency of exchanging code between group members. Often team members would exchange the entire code base between each other, even if only one or two files had changed.
6.2.2 Java Swing

While the Java Swing library provides a convenient way to create robust GUI applications, there are a number of “gotchas” and issues that developers must be cognizant of when writing the application. One issue that arose was that following a button being pressed, the application would freeze. Following several hours of debugging, it was determined that two “heavy” containers (Applet and Frame) were being used incorrectly and a removeAll() call to refresh the panel was placed in the wrong spot within the application.
Appendix A: Technology Selection Background
Following the initial meeting with our client (Dr. Dickerhoof), he stated that he did not have a strong preference in what technologies we chose to create the web application with. His only requirement was that he be able to maintain the code following completion of our project. For this reason he had a slight preference for Microsoft based web technologies (ASP, .NET).

The group decided to evaluate each technology based on an evaluation matrix that contained the most vital criteria to consider when selecting a technology. The categories selected were:

· Resources – the ability to obtain a development environment and tools

· Proficiency – how proficient the group is (collectively) in the technology

· Learning Curve - the perceived ability to learn the technology in an expeditious manner

· Set Up – obtaining a deployment environment and ease of deployment

· Maintenance – the ability for the client to maintain the code based on what he stated in the initial meeting

Each category was then weighted based on importance and judged on a 0-5 point scale (0=poor, 5=excellent) by a group consensus opinion.

The matrix is shown below:

[image: image8.emf]Chem #2 Technology Evaluation Matrix

Technology Resources Proficiency Learning Curve Set Up Maintenance Total

Microsoft (ASP, .NET) 2 3 3.5 2.5 4 3.00

Sun (Java, JSP) 4 3 3.5 4 2.5 3.30

PHP 4 2 2 4 2 2.70

Web Services 3 2.5 2 3 3.5 2.85

Cold Fusion 0.5 2 3 1 2 1.65

Sun Microsystems’ Java technology was chosen because one group member has a significant amount of Java experience and the development tools are free. The client also stated that he would likely be able to maintain Java.

Our next step was to discuss the options with CSM’s Academic Computing department. The department informed us that each department (or even research group) manages their own web infrastructure. Resources needed to establish and administer that infrastructure must come from the individual, unless can be deployed on existing resources. The school does maintain a central web server, but is a bit dated and cannot support Microsoft or Java server-side (JSP, Servlet) web technologies.

After discussing other alternatives with the client that included a Microsoft .NET executable and a Java applet, we concluded that a Java applet based version of the application would be the best choice. This allows for the application to still be web-based and requires no special software or support on a web server, allowing us to use the existing centrally hosted web server by the school.

Appendix B: Installation, Folders and Files Description
1. Website Installation
The website installation is simple: Copy ALL the files within the “ChemSolver HTML” folder to a folder on the designated web server. To launch the ChemSolver, just type in the web server address, i.e.: http://www.yoursite.com/yourChemSolverFolder/index.html
2. Folders and Files Description

2.1 ChemSolver HTML
a. images

All the images for the layout of the HTML pages, such as buttons, and logo.
b. Templates

Dreamweaver’s HTML template needed to update the layout of other HTML pages.
ChemSolver.psd – Photoshop file of the HTML interface.
ChemSolverApplet.jar – Contains all of the ChemSolver java classes needed to run the application.
contact.html – HTML file with contact information.

extras.html – HTML file with useful chemistry links.

index.html – Main HTML file with Java applet.

instruction.html – HTML file with instructions of how to use the program.

ss01.html, ss02.html, ss03.html – HTML file with screenshots.

styles.css – HTML Stylesheet.

2.2 ChemSolver Sources

a. bin

Complied class files, does not needed for editing.
b. edu

mines

chemsolver

chemobject – chemistry basic objects

ChemicalCompound – Chemical compound’s behavior.

ChemicalCompoundContext – Contain a chemical compound and return error if can’t parse.

ChemicalCompoundFactory – Process parentheses, charges, hydrates, ions, and output to the matrix.

ChemicalElement –Contain symbols and how many times an element exists in a compound.

ChemicalElementFactory – Give instances of existing element, or create if element does not exist.
ChemicalEquation – Represent a chemical equation with elements on left/right sides.

ChemSolverConstants – Constant values to be used.

ErrorContext – Errors display.
AtomicWeights.properties – Element’s weight.

PeriodicElementsTable.properties – Element’s name and symbol.

content –

ChemEntryPanel – input boxes

ChemInitialSetupPanel – Initialize setup

ChemResultsPanel – Display result(s)

ChemSolverSpeciesResultsPanel – Species analyze.

dialog – dialogs display

ChemSolverCopyrightDialog​ – Copyright info.

ChemSolverErrorDialog – Display errors.

ChemSolverRulesDialog – Display instructions.

ChemSolverSpeciesDialog – Species analysis window.
math – mathematical processing

ChemicalMatrixGenerator – create a matrix containing the number of elements and the charge of each compound.

CoefficientNumberExtrator – extracts and return coefficients from the RREF matrix.

RationalNumber – implement fractions

RowEchelonTransform – reduces the matrix to a

reduced row echelon form.
test – unit tests

AllTests – runs all of the tests listed below
ChemicalCompoundParseTest – tests the ChemicalCompoundFactory to ensure that ChemicalCompounds are created correctly

ChemEquationTest – tests that ChemicalEquations can be generated properly following coefficient number extraction

ChemicalMatrixGenTest – tests the ChemicalMatrixGenerator

CoefficientNumberExtractorTest – tests the CoefficientNumberExtractor

RowEchelonFormTest – tests the RowEchelonTransform
HTML Page

<HTML>

<Applet>

…

</Applet>

Java Applet

CS

Balancer

CSApp

Frame

CSApplet

PAGE
- 23 -

_1212438904

_1210336082.xls
Sheet1

		Chem #2 Technology Evaluation Matrix

		Technology		Resources		Proficiency		Learning Curve		Set Up		Maintenance				Total

		Microsoft (ASP, .NET)		2		3		3.5		2.5		4				3.00

		Sun (Java, JSP)		4		3		3.5		4		2.5				3.30

		PHP		4		2		2		4		2				2.70

		Web Services		3		2.5		2		3		3.5				2.85

		Cold Fusion		0.5		2		3		1		2				1.65

Sheet2

		

Sheet3

		

