CSCI 262
Data Structures
19 – Analysis of Recursive Algorithms, Binary Search, Merge Sort

RECURSIVE ALGORITHMS

Recursive Function Analysis

Here’s a simple recursive function which raises one number to a (non-negative) power:

```c
double power(double n, unsigned k)
if k == 0 return 1
return n * power(n, k-1)
```

What is the cost of `power()`?

Analyzing Power

- First, note that we want to analyze power in terms of `k`, not `n` (why?)
- Now, ask the following two questions:
 - How much work do we do within `power()`, excluding the recursive call?
 - How many calls do we make to `power()`?

Analyzing Power

We can think of this another way by visualizing our call stack, and ask these questions:

- How much work at each level?
- How many levels?

Analyzing Power

```c
double power(double n, unsigned k)
if k == 0 return 1
return n * power(n, k-1)
```

How much work at each level?
How many levels?

- One comparison, one multiplication
Analyzing Power

```c
double power(double n, int k)
if k == 0 return 1
return n * power(n, k-1)
```

How much work at each level?
- One comparison, one multiplication

How many levels?
- How many times can we subtract 1 before we get to k == 0?

Analysis:
- 2 operations per level * k levels
 = 2k operations
- In “Big O”, we drop constants, so that’s O(k).

Analyzing Power 2

Suppose we try a different approach. This one is doubly-recursive:

```c
double power(double n, unsigned k)
if k == 0 return 1
else if k == 1 return n
else return power(n, ⌈k/2⌉) * power(n, ⌊k/2⌋)
```

The expression ⌈x⌉ is called the ceiling of x, and means that we round up to the nearest integer. ⌊x⌋ is called the floor of x, and means we round down.

• Now things are more complicated, because each call to power turns into two more calls to power, etc.
• Instead of a stack, we can visualize this as a “call tree”:

For these kinds of problems, easier to approximate using an ideal case:
- Assume k is power of 2: k = 2^p
- Now we divide k evenly in half at each level

• How many levels are in our tree?
• How much work is done at each level?
Analyzing Power 2

We do constant work in power.
So our work is less than or equal to:

\[
\text{some constant} \times \left(1 + 2 + 4 + ... + \frac{k}{2} + k\right)
\]

The sum \(1 + 1/2 + 1/4 + ... + 1/k < 2\), so our total is

\(< 2 \times \text{some constant} \times k\), same as before!

A Smarter Way

Here's a better way:

\[
\text{double power(double n, unsigned k)}
\]

if \(k == 0\) return 1

\[
\text{double m = power(n, \lfloor k/2 \rfloor)}
\]

if \(k\) is even

\[
\text{return m * m}
\]

else

\[
\text{return m * m * n}
\]

Correctness

Does this work?

Try it: let \(k = 11\)

\[
\text{power(n, 11)}
\]

\[
m = \text{power(n, 5)}
\]

\(k\) is odd so

\[
\text{return (m * m * n) = (n^5 * n^5 * n) = n^{11}}
\]

Analyzing Power 3

How high is the stack?

How many times can you divide a number by 2 before getting to 1?

So the cost of this version is \(O(\log_2 k)\), much better than \(O(k)\).

Analyzing Power 3

Compare to previous version:

- Only 1 recursive call
- Still divide \(k\) in half at each step

Now our call “tree” is just a stack again...
But shorter than the first version’s stack!

Searching with

\text{DIVIDE AND CONQUER}
Divide and Conquer

- Split problem into multiple smaller sub-problems
- Solve the sub-problems recursively
- Recombine solutions afterwards
- When splitting/recombination can be done efficiently, this approach is a winner

Linear Search

Search for a value in a sorted list.

Obvious approach:

```pseudocode
// find element k in sorted list x containing n elements
search(x, k)
for i = 1 to n
    if x[i] == k return i
return NOTFOUND
```

Complexity: O(N)

Binary Search

Search for a value in a sorted list.

```pseudocode
// find element k in sorted list x containing n elements
binary_search(x, k)
if x is empty
    return NOTFOUND
pivot = n/2 // look at element halfway through list
if x[pivot] == k
    return pivot // if found, return
else if k < x[pivot] // else search left or right sublist
    return binary_search(x[1 : pivot-1], k)
else
    return binary_search(x[pivot+1 : n], k)
```

Binary Search Example

Search for a value in a sorted list.

Example: search for 11 in the list 1-15

```plaintext
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pivot
9 10 11 12 13 14 15
```

Analysis of Binary Search

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>Compare with pivot</td>
</tr>
<tr>
<td>(O(1))</td>
<td>Return or choose new pivot</td>
</tr>
<tr>
<td>(O(1))</td>
<td>(N/2) elements</td>
</tr>
<tr>
<td>(O(1))</td>
<td>(N/4) elements</td>
</tr>
<tr>
<td>(O(1))</td>
<td>Worst case: element not found</td>
</tr>
<tr>
<td>(\log N)</td>
<td>Complexity: # of times we split the list in two before getting to length 1 = (\log_2 N)</td>
</tr>
</tbody>
</table>

MERGE SORT

Another divide & conquer algorithm:
Merge Sort

- Divide and Conquer algorithm for sorting
 - Split input list in half
 - Sort the halves
 - Merge the sorted lists

```python
merge_sort(x)
    n = length(x)
    if n == 1 return x
    left = merge_sort(x[1 : n/2])
    right = merge_sort(x[n/2 + 1 : n])
    return merge(left, right)
```

Merge Sort Illustrated

```
merge(a, b)
    // treat a, b as stacks or queues
    x = empty list
    loop
        if a is empty
            append b to x, return x
        else if b is empty
            append a to x, return x
        else if top(a) < top(b)
            append pop(a) to x
        else append pop(b) to x
    return x
```

Analysis of Mergesort

Split = O(1)

Merge = O(N)

2 x Split = O(2)
3 x Merge = O(3)

 etc.

N elements

N/2 elements

N/2 elements

Complexity: ?

Interlude

LOGARITHMS AND BIG O
About Logarithms

- \(\log_b b^k = k \)
- For any \(b \), \(\log_2 x = \log_b x / \log_b 2 \)

 This shows that the base doesn’t matter in “big O” – all bases are just a constant factor from base 2.

- Because \(\log_2 x \) comes up so often, it is often abbreviated to “\(\lg x \)” in computer science.

Sorting in the STL

Sorting in Standard Library

- Sorting in the C++ standard library
 - Works on random access iterators
 - Works on vectors, strings, and arrays

```cpp
#include <algorithm>

void sort(begin_iterator, end_iterator)
```

sort example

Sorting a vector:

```cpp
#include <algorithm>

vector<int> vec = {17, 42, 100, -3, 50};

sort(vec.begin(), vec.end());

for (int n : vec) cout << n << " ";
```

Output:

```
-3 17 42 50 100
```

Another sort example

Sorting a string:

```cpp
#include <algorithm>

string s = "Hello, world!";

sort(s.begin(), s.end());

cout << s << endl;
```

sort Notes

- Elements of container must be comparable using "<"
 - Depending on application, may be able to overload "<" for items to be sorted
 - Otherwise, have to supply a separate bool valued function as a third parameter to sort:

```cpp
bool rev(int a, int b) {
    return b < a; // default comparison is a < b
}

int main() {
    vector<int> foo = {16, 4, 23, 1, 2, 17, 6};

    sort(foo.begin(), foo.end()); // {2, 2, 4, 6, 16, 17, 23}
    sort(foo.begin(), foo.end(), rev); // {2, 17, 16, 4, 2, 1}
    return 0;
}
```
Up Next

- Wednesday, Nov. 29
 - Linked Lists
 - APT 5 assigned
- Friday, Dec. 1
 - Lab 11 – analysis of algorithms