CSCI 262
Data Structures

18 – Selection Sort

Sorting
- Input: a list of elements, e.g. integers
- Output: a list of the input elements in sorted order

Why do we study this problem?
- Teaching example
 - Algorithm design
 - Algorithm analysis
- Sorting is also useful for all sorts of applications

Selection Sort
- Input: a list of elements, e.g. integers
- Output: a list of the input elements in sorted order

- A simple solution:
 - Find the minimum element in the list
 - Swap it with the first element in the list
 - Sort the sublist after the first element

- This sorting algorithm is named selection sort.

Selection Sort Illustrated

Selection Sort Code

template <typename T>
void selection_sort(vector<T> & vec) {
 int n = vec.size();
 for (int left = 0; left < n; left++) {
 int right = left;
 for (int j = left + 1; j < n; j++) {
 if (vec[j] < vec[right]) right = j;
 }
 swap(vec[left], vec[right]);
 }
}

Analyzing Selection Sort
Recall we want to count basic computer steps...

1 template <typename T>
2 void selection_sort(vector<T> & vec) {
3 int n = vec.size();
4 for (int left = 0; left < n; left++) {
5 int right = left;
6 for (int j = left + 1; j < n; j++) {
7 if (vec[j] < vec[right]) right = j;
8 }
9 swap(vec[left], vec[right]);
10 }
11 }
12
What is x? Ans: $n - left - 1$.

How do we add these up?
Analyzing Selection Sort

Things we can easily count:
1 step (line 3)
4n steps (lines 5 and 10)

Things that are trickier:
n – left – 1 (different value of left each time)

Analyzing Selection Sort

Just have to count carefully:
1st time through:
left = 0, so n – left – 1 = n – 1
2nd time through:
left = 1, so n – left – 1 = n – 2
... Last time through:
left = n – 1, so n – left – 1 = 0

Putting it all together, we have:
Cost of selection sort is
\[1 + 4n + n(n - 1)/2 \]
\[= \frac{n^2}{2} + 7n/2 + 1 \]

What is the “big-O” of this expression?

Analysis Complete

Selection sort is O(n^2)

Can we do better? (Yes, to be continued)

Up Next

- Friday, Nov. 10
 - Lab 10 - Inheritance
- Monday, Nov. 13
 - Midterm Review
 - Project 4 Due
- Wednesday, Nov. 15
 - Midterm Exam 2 (in class)
- Friday, Nov. 17
 - Fun & Games (optional)
- Monday, Nov. 20
 - Analysis of Algorithms 2 (recursive algorithms)