Algorithms

A working definition: a sequence of instructions for performing a task

Some common properties of algorithms:
- provably correct
- clear and unambiguous
- automatable
- efficient?

Efficiency

What do we mean by efficiency?
Consider two functions that erase all elements of an array list:

```cpp
void array_list::clear1() {
    while(_size > 0) erase(0);
}
```

```cpp
void array_list::clear2() {
    for (int j = _size-1; j >= 0; j--) erase(j);
}
```

Which does less work?

Measuring Work

- Our measure of work done will be roughly equal to the number of basic computer steps performed
- A basic computer step is any constant time operation:
 - Arithmetic operation
 - Basic variable assignment/copy
 - Comparisons/branching
 - Memory/array access, e.g., `x = a[i]` or `a[i] = x`
- Non-basic computer steps:
 - Loops
 - Memory/array copy
 - String concatenation
 - Function calls (depends on what function does)
- In general, if time spent does not depend on the input, it is constant time

Measuring Work: erase

```cpp
class array_list {
public:
    void erase(int index);
private:
    int* _arr;
    int _size;
    int _capacity;
};
```

```cpp
void array_list::erase(int index) {
    for (int j = index; j < _size - 1; j++)
        _arr[j] = _arr[j + 1];
    _size--;
}
```

Measuring Work: clear1

How much work does this do?

```cpp
void array_list::clear1() {
    while(_size > 0) erase(0);
}
```

Suppose our array is size 10 to start with. Keep in mind what erase(0) is doing: copying elements 1-9 over into positions 0-8.
Measuring Work: clear1

How much work does this do?

```cpp
void array_list::clear1() {
    while(_size > 0) erase(0);
}
```

- First time through while loop: 9 array accesses/copies + update size
- Second time through: 8 array accesses/copies + update size
- ...
- Last time through: update size

So the amount of work is 10+9+...+1.

Measuring Work: clear2

How much work does this do?

```cpp
void array_list::clear2() {
    for (int j = _size - 1; j >= 0; j--)
        erase(j);
}
```

How much work does erase(j) do?

```cpp
void array_list::erase(int index) {
    for (int j = index; j < _size - 1; j++)
        _arr[j] = _arr[j + 1];
    _size--;
}
```

- First time through while loop: update size
- Second time through while loop: update size
- ...
- Last time through while loop: update size

So work is 1+1+...+1.

\[\sum_{i=0}^{n} i = \frac{n(n + 1)}{2} \]

That is,

\[0 + 1 + 2 + \cdots + n = \frac{n^2 + n}{2}. \]

n

Let’s generalize to arrays of size n:

clear1: \(n + (n-1) + (n-2) + \cdots + 1 \) (sum from 1 to n)
clear2: \(1 + 1 + 1 + \cdots + 1 \) (sum of n 1’s)

For an array of size n, clear2 takes n steps.

What about clear1?

Arithmetic Series

Memorize this!

\[\sum_{i=0}^{n} i = \frac{n(n + 1)}{2} \]

That is,

\[0 + 1 + 2 + \cdots + n = \frac{n^2 + n}{2}. \]
How to Solve $\sum_{i=0}^{n} i$

Write the sum twice, once forwards and once backwards; then sum the two:

\[
\begin{array}{ccccccc}
0 & + & 1 & + & \ldots & + & n-1 & + & n \\
+ & n & + & n-1 & + & \ldots & + & 1 & + & 0 \\
\hline
= & n & + & n & + & \ldots & + & 1 & + & 0
\end{array}
\]

How many n's are there in the sum? Answer: $n+1$.

Since we took twice the summation, we have to divide by 2, thus we have $n(n+1)/2$.

Can also prove easily using induction...

“Big O”

Big O notation:

$O(n)$ measures asymptotic complexity of algorithm

Don’t worry about the fancy language for now – this will be explained in CSCI 406!

What is important:

- In Big O, lower order terms and constant don’t matter
- More interested in how functions grow with size of n

Simplifying

Typically use the simplest term in expression:

- Lower order polynomials can be ignored because they are completely dominated by higher order polynomials
 - $O(n)$ not $O(n^2 + n + c)$
 - $O(n^2)$ not $O(n^3 + n + c)$
- Ignore constants
 - $O(n)$ not $O(\log n)$
 - $O(n)$ not $O(n/2)$

Dominance relations ($a > b$ means a dominates b):

$n! > 3^n > 2^n > n^3 > n^2 > n \log n > n > \log n > 1$

Big O of clear Functions

- clear1: $O(n^3/2 + n/2) = O(n^3)$
- clear2: $O(n)$

Knowing how array_list works, can you think of an even better way to write a clear() function?

Big-O Comparisons

Comparison of different orders of functions as size of input n:

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10^4</th>
<th>10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(n)</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>100</td>
<td>1000</td>
<td>100000</td>
<td>1000000000</td>
</tr>
<tr>
<td>$n \log(n)$</td>
<td>10</td>
<td>200</td>
<td>3000</td>
<td>6×10^6</td>
<td>9×10^9</td>
</tr>
<tr>
<td>n^2</td>
<td>10^4</td>
<td>10^8</td>
<td>10^{14}</td>
<td>10^{20}</td>
<td></td>
</tr>
<tr>
<td>n^3</td>
<td>10^{12}</td>
<td>10^{18}</td>
<td>10^{24}</td>
<td>10^{30}</td>
<td></td>
</tr>
</tbody>
</table>

Why We Care 1

Forget it!
Why We Care 2

Assuming 2×10^{10} operations/second (approximately the FP performance of a typical CPU c. 2011)

<table>
<thead>
<tr>
<th>n</th>
<th>$\log(n)$</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>10^3</th>
<th>10^6</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 1 ns</td>
<td>< 1 ns</td>
<td>< 1 ns</td>
<td>1 ns</td>
<td>1 ns</td>
<td>2 ns</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>< 1 ns</td>
<td>< 1 ns</td>
<td>< 1 ns</td>
<td>50 μs</td>
<td>50 ms</td>
<td>50 s</td>
<td></td>
</tr>
<tr>
<td>$n \log(n)$</td>
<td>< 1 ns</td>
<td>< 1 ns</td>
<td>1 ns</td>
<td>300 ms</td>
<td>450 ms</td>
<td>10 min</td>
<td></td>
</tr>
<tr>
<td>n^2</td>
<td>< 1 ns</td>
<td>125 ns</td>
<td>500 ns</td>
<td>50 s</td>
<td>1.6 years</td>
<td>1.6 million years</td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>50 ns</td>
<td>16 hours</td>
<td>1.5 trillion years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datasets of size 10^5 and above are commonplace!

of unique URLs seen by Google indexer c. 2010

Up Next

- Wednesday, Nov. 8
 - Analysis of Algorithms 2
 - Selection Sort (maybe)
- Friday, Nov. 10
 - Lab 10 (TBD)
 - Project 4 Due
- Monday, Nov. 13
 - Midterm Review
- Wednesday, Nov. 15
 - Midterm 2 (in class)