Colorado School of Mines

Computer Vision

Professor William Hoff
Dept of Electrical Engineering & Computer Science
http://inside.mines.edu/~whoff/
Training Feature Recognizers

Some materials from:
• cv.snu.ac.kr/hyunxx/Seminar/2009/2009-08-21/CompactSignatures.ppt
• Comparative Evaluation of Random Forest and Fern classifiers for Real-Time Feature Matching, by I. Barandiaran
Training Feature Recognizers

- A recent development in feature tracking is to use learning algorithms to build special-purpose recognizers for features.
- You need to train classifiers on sample patches and their affine deformations.
- Then, extremely fast and reliable feature detectors can be constructed.

Real-time head tracking using the fast trained classifiers of Lepetit, Pilet, and Fua (2004)

- Keypoint recognition using randomized trees, V. Lepetit, P. Fua (PAMI 2006)
- Fast Keypoint Recognition using Random Ferns, M. Ozuysal, M. Calonder, V. Lepetit, P. Fua (PAMI 2009)
Randomized tree
Randomized tree

A simple classifier f

- Randomly select pixel position a and b in the image patch
- Simple binary test
 - The tests compare the intensities of two pixels around the keypoint:

\[
 f_i = \begin{cases}
 1, & \text{if } I(a_{f_i}) > I(b_{f_i}) \\
 0, & \text{otherwise}
 \end{cases}
\]

$I(*)$: Intensity of pixel position $*$

Invariant to light change by any raising function
Randomized tree

- Initialization of RT with classifier f
 - Define depth of tree d and establish binary tree...
 - Each leaf has a N dimensional vector, which denotes the probability for each class.

Number of leaves = 2^d, where $d =$ total depth
Randomized tree

- **Training RT**
 - Generate patches to cover image variations (scale, rotation, affine transform, ...)

![Images of a person in different poses and perspectives]
Randomized tree

- Training RT
 - Implement training for all generating patches...
 - Update probabilities of leaves...

Depth 1

Depth 2

Leaf
Randomized tree

- Training RT
 - Implement training for all generating patches...
 - Update probabilities of leaves...

- Depth 1
- Depth 2
- Leaf
Randomized tree

- Training RT
 - Implement training for all generating patches...
 - Update probabilities of leaves...

depth 1

depth 2

leaf
Randomized tree

Classification with trained RT

- Implement classification for input patches...
- Confirm probability when a patch reaches a leaf...

depth 1

depth 2

leaf
Randomized tree

- **Random forest**
 - Multiple RTs (or RF) are used for robustness.
Randomized tree

- Random forest
 - Final probability is summed value of probability of each RT.

Final probability
Fern classifier
Fern classifier

- Randomized tree

Depth 1

Depth 2

Depth 3

\begin{itemize}
\item \(f_0 \) with children \(f_1 \) and \(f_2 \)
\item \(f_1 \) with children \(f_3 \) and \(f_4 \)
\item \(f_2 \) with children \(f_5 \) and \(f_6 \)
\end{itemize}
Fern classifier

- Modified randomized tree
 - In same depth, same classifier f is used

Diagram:
- Depth 1: f_0
- Depth 2: f_1 and f_1
- Depth 3: f_2, f_2, f_2, f_2
FERNS

Classifier Training

\[P(F_k \mid C = c_i) \]

Posterior Distributions (Look-up Tables)

\[2^3 \text{ Possible Outputs} \]
FERNS

Classifier Training

- **Fern 1**
 - Posterior Distributions (Look-up Tables)
 - Class 1
 - Class 2

- **Fern 2**
 - Posterior Distributions (Look-up Tables)
 - Class 1
 - Class 2

- **Fern n**
Example Classification.

\[\text{Example class label} = \arg \max_f \prod_{i=1}^M \left(P(F_k \mid C = c_i) \right) \]
Summary

❖ Pros.
 ● Easily handle multi-class problems.
 ● Easily cover large perspective and scale variations.
 ● Classifier training is time consuming, but recognition is very fast and robust.

❖ Cons.
 ● Memory requirement is high.