Colorado School of Mines

Computer Vision

Professor William Hoff
Dept of Electrical Engineering & Computer Science
http://inside.mines.edu/~whoff/
Fundamental Matrix

There’s even a song about it! See http://danielwedge.com/fmatrix/
Recall the Essential Matrix

• Is the matrix E, that relates the image of a point in one camera to its image in the other camera, given a translation and rotation

$$p_0^T E p_1 = 0$$

• where

$$E = [t]_x R$$

• and

- p_0, p_1 are corresponding points (normalized image coordinates)
Fundamental Matrix

• To work with the essential matrix we have to know the intrinsic camera parameter matrix \(K \)
 – We use \(p_0, p_1 \) which are normalized image coordinates (i.e., \(x = X/Z, y = Y/Z \))
 – We find normalized image coords using \(p = K^{-1} u \), where \(u \) are the un-normalized image coords

• If we don’t know the intrinsic parameter matrix
 – all we have is the un-normalized image points
 – we can still relate the views
 – We use the fundamental matrix \(F \)
Fundamental Matrix

• We have
 \[p_0^T E p_1 = 0 \]

• Let
 \[p_1 = K^{-1} u_1 \]
 \[p_0^T = (K^{-1} u_0)^T = u_0^T K^{-T} \]

• Then
 \[u_0^T K^{-T} E K^{-1} u_1 = 0 \]

• or
 \[u_0^T F u_1 = 0 \]

• where F is the fundamental matrix
 \[F = K^{-T} E K^{-1} \]

• Note
 – \(F \) is defined in terms of pixel coordinates
 – You can still reconstruct the epipolar lines using \(F \)

Also note that

\[E = K^T F K \]
Solving for F

• We solve for F using the same methods as we used to solve for E
 – Except the corresponding points are in un-normalized coordinates

• We have
 \[\mathbf{u}_0^T \mathbf{F} \mathbf{u}_1 = 0 \]
 \[\begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} x_0 & y_0 & 1 \end{pmatrix} = 0 \]

• Write as \(\mathbf{A} \mathbf{x} = \mathbf{0} \), where \(\mathbf{x} = (F_{11}, F_{12}, F_{13}, \ldots, F_{33}) \)
 \[\begin{pmatrix} x_0 & y_0 & 1 \end{pmatrix} \begin{pmatrix} x_0 & x_1 & y_0 & y_1 & x_1 & y_1 & 1 \end{pmatrix} = 0 \]
Residual Error

• For each image point p_2, the corresponding point p_1 in the other image should ideally lie exactly on the epipolar line $l = F \ast p_2$

• If there is noise, the residual error = distance from the actual point p_1 to the epipolar line

• Distance from point $p_1 = (x_1, y_1, 1)^T$ to line with parameters $l = (a, b, c)^T$ is

$$d = \frac{\text{abs}(p_1^T \ast l)}{\sqrt{a^2+b^2}}$$

See http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
Matlab code to compute residuals

% Get error residuals for all points, using the final F.
dp = zeros(N,1);
for i=1:N
 % The product l=F*p2 is the equation of the epipolar line corresponding
 % to p2, in the first image. Here, l=(a,b,c), and the equation of the
 % line is ax + by + c = 0.
x2 = pts2(i,:); % Point in second image
l = F * [x2;1]; % Epipolar line in first image
 % The equation of the line is ax + by + c = 0.
 % The distance from a point p1=(x1,y1,1) to a line with parameters
 % l=(a,b,c) is d = abs(p1' * l)/sqrt(a^2 + b^2)
 % (see
 % http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html)
x1 = pts1(i,:); % Point in first image
dp(i) = abs(([x1;1]' * l))/sqrt(l(1)^2 + l(2)^2);
end
Reconstruction

• With the essential matrix we could reconstruct the scene points to a scale factor (Euclidean reconstruction)

• We can’t do Euclidean reconstruction with the fundamental matrix; however we can do a projective reconstruction
 – Orthogonal lines or planes in the world may not end up being reconstructed as orthogonal

http://www.cse.iitd.ernet.in/~suban/vision/multiple/node11.html