
CSCI 370 Final Report

Walker Water - Watershed Analytics

Nathan Howland
Luke Hart
Cole Rincon

Chase McDonald

Revised June 15, 2023

CSCI 370 Summer 2023

Prof. Amelia Read

1

Table 1: Revision history

Revision Date Comments

1.0 May 15, 2023 Completed Sections:
I. Introduction

1.1 May 16, 2023 Completed Sections:
II. Functional Requirements
III. Non-Functional Requirements
IV. Risks

1.2 May 18, 2023 Completed Sections:
V. Definition of Done

1.3 May 19, 2023 Completed Sections:
XIV. Team Profile
Modified Sections

● References
● Appendix A

2.0 May 26, 2023 Completed Sections:
VI. System Architecture

3.0 May 31, 2023 Completed Sections:
VIII. Software Test and Quality
IX. Project Ethical Considerations

4.0 June 11, 2023 Completed Sections
X. Results
XI. Future Work
XII. Lessons Learned

4.1 June 12, 2023 Updated All Sections

4.2 June 13, 2023 Completed Section:
VII. Technical Design

4.3 June 15, 2023 Implement suggestions from report review

2

Table of Contents
I. Introduction 4
II. Functional Requirements 4
III. Non-Functional Requirements 4
IV. Risks 5
V. Definition of Done 6
VI. System Architecture 6

Input/Output Specifications 6
System UML 7

VII. Technical Design 9
Grid Cell Proportioning 9

VIII. Software Test and Quality 11
Unit Tests 11
Functional Tests 12
Code Reviews 12

IX. Project Ethical Considerations 13
X. Results 14

Features Implemented 15
XI. Future Work 16

Performance Enhancements 16
Improved Accuracy in Groundwater Analysis 16
Flow Analysis 16
Higher Resolution Grid Data 16

XII. Lessons Learned 17
XIII. Acknowledgements 18
XIV. Team Profile 18
References 19
Appendix A – Key Terms 19

3

I. Introduction
Walker Water is a software development company focused on delivering high quality irrigation
water management tools. Recent developments emphasize snow water supply forecasting
methods. This involves analysis and measurement of snow water equivalent (SWE) content
within the snowpack, resulting in basin-wide SWE estimates, and snowmelt runoff modeling.
The benefit to water managers and end users is to reliably predict snow water availability to
reservoir fill and streams during runoff. This knowledge allows irrigators to determine if the
upcoming season will be in short or long supply of water. A previous field session team began
this process by creating an algorithm which would trace the path of a single “marble”,
representing a drop of water, as it followed the path of least resistance down the mountain. We
will add on to their software by modeling the snowmelt and capturing the amount of water at
every point on the land at any given time in the simulation. We will receive elevation data and a
map of the SWE directly from Walker Water, in addition to any technical information necessary
to build an accurate simulation.

II. Functional Requirements
1. The simulation must accept a CSV file representing elevation data for a mountain at

points on a grid. This input file includes UTM coordinates, latitude, longitude, elevation
data, snow water equivalent data, and runoff coefficient data, for every data point.

2. The simulation must also read reservoir data stored in CSV files to get information on
reservoir names, positions, initial water volumes, and capacities.

3. The program must output a binary file representing the amount of water at each point in
the grid at the end time, as well as the volume of water contained in each reservoir.

4. The program must be able to produce results for any generic given period of time.
5. This iteration of the simulation will assume surface friction is negligible but will include an

absorption coefficient to begin the complex modeling of how much water is absorbed into
the ground as it makes its way down the mountain.

III. Non-Functional Requirements
1. The program is written in C++, since that is what previous iterations of the program were

developed with.
2. Development must be done on Windows machines in the Visual Studio IDE to ensure

new developments are compatible with previous software
3. The program’s output will be a binary file with water supply in each grid cell at each time

step. The specifications of the file format will be provided to Walker Water for input to
their 2D GIS basemap and 3D visualization system.

4. The program is delivered to the client as source code which can be modified and
compiled as the client sees fit.

4

IV. Risks
Table 2: Technology Risks

Risk Likelihood Impact Mitigation Plan

Errors in Existing
Simulation: Mr. Walker
informed the team that in the
simulation developed last
Fall, water traveled uphill,
which is not correct.

Very Likely Minor We spent time correcting errors
in the old code and carefully
familiarized ourselves with the
previous field session group’s
software so that we
understood their work and
could correct any other errors.

Inaccurate Simulation
Results: If the final product
developed by Walker Water
has errors, drought
predictions could be
compromised and agriculture
in the region would suffer.

Unlikely Major We consulted with water
resource experts through
Walker Water to ensure that
our simulation functions as
accurately as possible.

Performance Issues: Since
the simulation may need to
process millions of water
molecules, it may run slowly.

Likely Minor We invested time into
optimizing our simulation to
ensure it runs as quickly as
possible.

Table 3: Skill Risks

Risk Likelihood Impact Mitigation Plan

C++: The simulation needs to
be programmed in C++, so
limited experience in this
language could be a risk

Unlikely Major All team members are
proficient in C++ so we do not
anticipate our skill here to be
an issue.

OpenGL:Walker Water’s
animation software is written
in OpenGL, so limited
knowledge of OpenGL could
be a risk

Unlikely Minor The team will work through
OpenGL tutorials if deemed
necessary, however since our
simulation will mostly work with
text-based inputs and outputs,
detailed knowledge of OpenGL
may not be necessary.

5

V. Definition of Done
The product is done when the simulation can produce a binary file mapping the path of many
water molecules traveling through the terrain. The simulation should be able to produce this
result for any given length of simulation time. The client will test the software by displaying the
contents of the binary file with both a 2D GID based map and 3D OpenGL visualization
renderer. The client will verify that the water follows a path along natural drainages in a downhill
direction. Additionally, the client will ensure that water stops and pools in natural catchments.
The product will be delivered as a source code repository that the client can download, run, and
modify in the future.

VI. System Architecture

Input/Output Specifications
Walker Water provided simulation data through a set of CSV files. This data includes all of the
following:

● An assigned integer row and column for each cell in the rectangular grid that we are
simulating.

● An elevation for each cell in the grid.
● The latitude/longitude and UTM coordinate of each grid cell so we can understand each

grid cell’s position.
● An initial SWE for each cell in the grid, which lets us assign an initial depth of water to

each cell in the simulation.
● A runoff coefficient for each cell that approximates how water will interact with the

material on the terrain of that cell.
● A list of reservoirs with names, capacities, initial volumes, outline polygons, and spill

location coordinates.

Our watershed analysis program reads this data and runs the simulation. We then output the
simulation results to a binary file in a format agreed upon between Walker Water and the team.
This binary file contains information of the depth of water in every grid cell at every point in the
simulation so that the simulation can be completely recreated and animated from this file. Also
included is the volume of every reservoir at every iteration of the simulation. Walker Water is
then able to display the contents of this binary file in their OpenGL 3D graphics program. For
testing purposes, we created a simple and lightweight display program in Python using
matplotlib to visualize our results. This process is summarized in figure 1.

6

Figure 1: Input-Output Specification Diagram

System UML
The simulation architecture is summarized in figure 2. Program execution begins in the main
method. Here, a ReservoirFileManager and a GridFileManager is used to read file data for the
specified file paths. This file data is then stored in a 2D vector of GridCell objects to represent
every cell in a 2 dimensional section of land, and a 1D vector of Reservoir objects to enumerate
all the reservoirs on that section of land. Each grid cell has a latitude/longitude coordinate, a
UTM coordinate, an elevation, a depth of water, and a runoff coefficient based on the type of
surface material in the area of that grid cell. This data is passed into the SimulationBuilder
object. The SimulationBuilder collects simulation data and user-defined parameters, then
handles some initial setup for the data before it is ready to be simulated, such as assigning grid
cells to their correct associated reservoirs. Once the caller has supplied all data, they can call
SimulationBuilder.get_result() to obtain a Simulation object. The Simulation object handles
calculating how much water should be moved to each cell and how water should interact with
reservoirs in each iteration based on current water depths and reservoir volumes. The main
method then instructs the Simulation to complete a given number of iterations and queries the
state of the simulation object at each iteration to generate output data, which is stored in a
SimulationHistory object. Main will then use the SimulationHistoryFileManager to write the
required output.

7

Figure 2: System UML

8

VII. Technical Design

Grid Cell Proportioning
The main method through which our simulation handles the distribution of water across land
over time is through a water proportioning algorithm. In this algorithm, we consider every cell in
the simulation grid and determine what proportion of water in each cell will move to each of its 8
neighbors. This process is visualized in figure 3, which shows how water moves from a center
cell to these 8 neighbors, with each cell’s elevation labeled in a view from above. Note that
when the elevation difference between a center cell and its neighbor is large relative to the
others, the arrow from the center cell to that neighbor is larger and darker. This serves to depict
a larger proportion of water being diverted to this cell, since there is a steeper downhill in this
direction. Likewise, when the elevation difference is relatively smaller, the arrows are smaller.
For neighbors whose elevations are higher than the center cell, there is no arrow, since no
proportion of water in the center cell will be sent in the uphill direction. In short, to calculate
these proportions, we simply calculate the difference between a center cell and each of its
neighbors (ignoring those with greater elevation than the center cell), then scale each of these
differences so that each value will become a decimal proportion, representing the proportion of
water in the center cell that will be moved to each neighbor.

Figure 3: Visualization of relative proportions

9

This method can lead to issues in situations where there is either a large quantity of water in a
center cell or a small difference between the elevations of the center and neighboring cells.
Consider the situation in figure 4a, which shows a side view of the situation shown in figure 3.
When the water in the center cell is distributed in equal proportions to the cells on the left and
right, the center cell is left with a lower total height than the combination of the elevation and
depth of water in its neighbors. This situation is unrealistic, since water is essentially traveling
uphill. To solve this problem, we calculate our proportions in the same way as described
previously, then we solve the following equation to calculate the exact amount of water that can
be dispersed by the center cell without allowing the center’s water level to drop below that of its
neighbors:

𝑑 = (𝑒
𝑐
 − 𝑒

ℎ
) / (1 + 𝑝

ℎ
)

Where
The total depth of water to disperse𝑑 =
The combined height of the elevation and water depth of the center cell𝑒

𝑐
 =

The combined height of the elevation and water depth of the highest neighboring𝑒
ℎ
 =

cell such that 𝑒
ℎ
 < 𝑒

𝑐

The previously calculated proportion of water that we initially wanted to send to the𝑝
ℎ
 =

cell corresponding to 𝑒
ℎ

Once this value is calculated, we can divide it by the total amount of water in the center cell to
get the proportion of water we can disperse to each neighbor combined. Then, we multiply the
initial neighbor proportions by this proportion to obtain the proportion of water we can send to
each neighbor. The results of this solution are summarized in figure 4b.

Figure 4a: Overproportioning demonstration

Figure 4b: Overproportioning solution

10

VIII. Software Test and Quality

Unit Tests
Unit tests serve two purposes: first, they ensure that individual algorithmic components of our
simulation are completely free of bugs at the time of their creation. Second, they ensure that
refactors and other adjustments to our program’s functionality do not cause bugs to reappear.
We are using Visual Studio’s CppUnitTest Framework to write tests and run them in the Visual
Studio IDE. All unit tests must pass for our product to be acceptable. We have not set specific
code coverage metrics to avoid unnecessary tests for simple units, but we enforce a
requirement for tests on any unit more complex than a getter or setter. Unit tests contribute to
the quality of our final product by ensuring that the underlying algorithms our simulation relies
upon are completely free of bugs and no strange behavior will be seen in our output files. Our
unit tests include the following:

● Program Options Tests: These tests confirm that the program is correctly able to read
data supplied over command line arguments or through an input file. For instance, the
user needs to be able to supply the simulation with file names for the input grid data, the
input reservoir data, and the output binary data. These tests confirm that our helpers
functions for reading this input are working correctly.

● File I/O Tests:We have created sample data files to test reading and writing for all
reservoir data, all water data, and all elevation data that is used in our software. These
tests check that writing data to a file, then reading that data using the corresponding
read operation, returns the same data as what was initially written.

● Simulation Builder Tests: These tests confirm that the simulation builder is correctly
processing the data the user supplies to it. This is a large set of tests since much of the
logic used to set up simulation data is very complex. One test confirms that the builder
removes reservoirs from the list if they do not exist within the coordinate data provided
as input. Another checks that GridCells are assigned to the correct associated reservoir.
There are many additional tests in this category, but all relate to the initialization of the
simulation.

● Reservoir Tests: These tests confirm all the behaviors of reservoirs. We test for the
distance to a reservoir’s spill coordinate from a test point, as well as the polygon
containment logic to see if a latitude-longitude point is contained within a reservoir’s
outline polygon.

● Simulation Tests: These tests are more complex, since the exact behavior of the
simulation object is subject to simulation parameters and may be adjusted depending on
what creates the most accurate results. However, we can still test for a few key
principles that should stay constant. First, we can test the relative values of water
transfer proportions; we know that steep descents should result in higher proportion
assignments than shallow descents, and that flat transitions or ascents should not
receive any water. Additionally, we can test for water conservation, that the amount of
water that starts in our simulation’s system should stay constant between iterations.

Test Results: All Unit Tests are passing as of the date of our project’s completion.

11

Functional Tests
The team has created a simple Python script to display simulation results using matplotlib to use
for functional testing. Ultimately, simulation results are displayed in Walker Water’s proprietary
C# software to be visualized. However, this software needed adjustments in order to
accommodate the output files produced by our simulation, so in the meantime, we used another
way to visualize our results. Functional tests contribute to the overall quality of our product by
making sure the water data our program outputs “looks right,” and that our simulation results
conform to the following criteria, among others:

● Water must move downhill.
● Water must generally follow the paths of drainages in the real world.
● Simulated particles must flow “like water.” For example, using our visualization, we were

able to identify a bug in our simulation, where water on a flat surface that should have
come to a resting equilibrium state actually continued to move and create an oscillating
depth pattern. The visualization tool helped us to identify and fix this unrealistic behavior.

● Reservoirs must spill their contents when full.

Test Results: Functional Tests were able to identify many bugs during the duration of our
project. Most notably, we had a bug where small “ripples” in a simulated surface of water could
grow into large waves, rather than settling into a flat surface. Our functional tests allowed us to
visualize this behavior and find a solution, so that water in our simulation now reaches a state of
equilibrium if it rests on a flat surface.

Code Reviews
Code reviews serve two purposes: first, they ensure that all team members are familiar with the
codebase as changes are made. Second, they ensure that all code we write follows SOLID
programming principles and meets the standards of quality outlined in the CSCI306 Clean Code
Document. Every time a team member wishes to merge the changes made in a feature branch
back into the main branch, at least one other team member needs to look over the changes to
ensure that they are up to par. If not, the other team member should suggest changes to make
the code more readable, maintainable, and clear. Code reviews contribute to the overall quality
of our program by ensuring that our simulation can be easily understood by outsiders. Our code
will serve as a starting point for future Walker Water employees and field session groups
developing this simulation, so the code we write must be readable and it must be able to scale
up to a larger program. Code reviews helped us achieve this.

Test Results: Code reviews have allowed us to ensure that all of our program is written
efficiently and is easy to understand.

12

IX. Project Ethical Considerations
Since the software we developed has the potential to impact the decisions of thousands of
farmers and other water-users in the Surface Creek Valley, we need to carefully consider the
ethics of the decisions we make for this project.

The following ACM/IEEE Principles are particularly pertinent to the development of our project:
● 3.11. Ensure adequate documentation, including significant problems discovered

and solutions adopted, for any project on which they work.
Our project was not finished by the end of this field session, and future developers will
need to continue our work. We must carefully document our problem solving process so
that we can provide future developers with enough context to understand our code.
Failure to properly document our project may result in being forced to redo the work we
have done so far, at significant cost to the client.

● 7.05. Give a fair hearing to the opinions, concerns, or complaints of a colleague.
Working as a team, we will need to maintain a continuous dialog between one another in
order to avoid conflict. Animosity between teammates could slow down the development
process, so it is preferable to resolve disagreements as soon as they arise.

● 8.02. Improve their ability to create safe, reliable, and useful quality software at
reasonable cost and within a reasonable time.
We are all students with lots to learn, so it’s important to recognize this principle because
learning should be our primary focus in this project.

The following ACM/IEEE Principles are most at risk of being violated in our project:
● 1.04. Disclose to appropriate persons or authorities any actual or potential danger

to the user, the public, or the environment, that they reasonably believe to be
associated with software or related documents.
This project aims to predict how much water farmers and residents in the Surface Creek
Valley will have in any given summer. Predicting less water availability than what is
actually available could cause unnecessary conservation efforts and economic harm to
farmers. Predicting more water availability than what is actually available would be even
more disastrous, in the worst case causing severe water shortages in the region. It is our
responsibility as developers to communicate these risks to users of our software, in
hopes of avoiding overreliance on our software that could cause these issues to occur.

● 3.02. Ensure proper and achievable goals and objectives for any project on which
they work or propose.
Since we have relatively little experience working on professional software projects, it will
be difficult for the team to estimate the scope of work we will be able to complete during
the time available, as we are not yet certain in our abilities. We will need to be overly
cautious when estimating timelines for this project to not overestimate our abilities and
promise more to the client than we can deliver.

● 3.04. Ensure that they are qualified for any project on which they work or propose
to work by an appropriate combination of education and training, and experience.

13

Given the lack of experience of our team, we can say with confidence that we are not
qualified to develop a complex fluid simulation that will be used to make real-world
decisions on water policy. Because of this, we must emphasize a focus on education
while developing our product, so that the team can learn as much as possible in order to
make the simulation as accurate as possible. Furthermore, we must communicate to the
client that because of our lack of qualifications, any software we produce must be
verified by experts or tested thoroughly against real world data before it is trusted.

The following Michael Davis Tests can be used to justify the ethical implications of our project:
1. The Harm Test:We are confident that our simulation will pass the harm test, since the

alternative to our simulation is for water managers to simply use rough snowfall
estimates and past experience to predict droughts. Our simulation will at least be much
more standardized than such rough estimates, making it useful even if it lacks some
accuracy due to the complexity of the variables that need to be modeled. In short, the
benefits of developing this simulation outweigh the harms.

2. The Publicity Test: The choice to develop this simulation would look very positive on
the front page of a newspaper. It stands a chance to greatly improve the accuracy of
reservoir volume predictions, which would be a positive aspect of this project in the eyes
of the public.

If the ethical considerations for our project are not comprehensive enough, we could end up
developing a product that promises more than it can deliver. It is vital that the team is honest
with the client about our technical abilities and our lack of qualifications to develop a complex
fluid simulation. While we will still be able to develop a comprehensive and potentially very
accurate product despite these qualifications, it is still important to have our efforts verified by
experts to ensure that our code will be as accurate to the real world as possible. Doing so will
ensure that the public and environment in and around the Surface Creek Valley can stay safe.

X. Results
Figure 5 depicts the result of our simulation, a single frame in an animation of water flowing
down the Grand Mesa. This is a bird’s eye view of the terrain, where lighter background colors
indicate higher elevations. Reservoirs are indicated by a light blue color, and water at various
points in the terrain is colored darker blue, with darker colors representing higher depths of
water. On the right side is a bar graph indicating the percentage of capacity of each reservoir at
this point in the simulation.

14

Figure 5: Simulation results screenshot

Features Implemented
● Grid file and reservoir file input - Our program can read the client’s data files that contain

information on a land grid with elevation, SWE depths, coordinates, and RC values, and
separate files that include information on reservoir names, positions, capacities, and
sizes.

● Simulation file output - Our program can efficiently output a binary file containing all
relevant data produced by our simulation, including reservoir volumes and grid cell
depths at all simulated times. Because we are using a binary file format, this feature is
very efficient, and writes data much faster than what could be written to a plain text file.

● Realistic water movement - Our program can accurately simulate the motion of water
over terrain features. The paths water takes in our simulation matches the paths of
drainages in the real world. We have adjustable parameters that can be used with
real-world data to calibrate the timing of our simulation to be accurate to the real world.

● Reservoir volume tracking - We can keep precise measurements of how much water is
in each reservoir at any simulated point in time.

● Reservoir spilling - When reservoirs reach their capacity, water spills over the reservoir’s
retaining structure and exits at the same point it would in the real world.

● Simple groundwater analysis - Our simulation includes basic interactions with
groundwater, where we remove some water from our simulation grid in every iteration in
an effort to simulate the effect of water being absorbed into the ground. This feature is
implemented using terrain surface qualities estimated by a hydrologist so that the
simulation will correctly reflect which land areas absorb more water than others.

● Simple visualization script - Our simulation includes a Python script which uses
matplotlib to visualize the results of our simulation. The performance in this script is not
very good, but it does a good job for quick tests to confirm that our simulation is working.

15

XI. Future Work

Performance Enhancements
Currently our simulation is single-threaded. The grid cell polygon assignment operation and the
proportion calculation and assignment step that takes place in every simulation iteration could
both be executed asynchronously to improve the speed of the program. Ideally, the team that
implements this feature would be knowledgeable on multithreaded programs in c++, but anyone
with an understanding of c++ and an ability to learn multithreading could complete this
functionality. This shouldn’t take a well-prepared group of programmers more than a few
workdays to implement.

Improved Accuracy in Groundwater Analysis
The current groundwater simulation uses very rough approximations to remove water from the
simulation grid as if it were being absorbed into the ground. Future work on this simulation could
be directed towards making this aspect of the simulation more accurate. For instance, the
simulation could keep track of how much water had previously been absorbed by cells and
reject some amounts of future absorption if a cell reaches a water capacity limit. Programmers
will need to work with hydrologists on this to ensure the simulation is accurate, but other than
this requirement, programmers would need little other experience other than a solid
understanding of c++. This feature could take upwards of a week to implement depending on
how accurate the simulation needs to be in this respect.

Flow Analysis
A potential application of this simulation would be to measure the flow rate of streams or rivers
in volume per second, since this data is useful to water managers. This would require difficult
advanced calculations on the data we are already simulating to collect these numbers.
Additionally, we would first need higher resolution elevation data to correctly visualize precise
paths of rivers. This feature would most likely take a competent c++ programmer over a week to
implement.

Higher Resolution Grid Data
Our elevation data only had points every 100 meters. Ultimately, Walker Water would like
simulations to be as accurate as one point every meter. Simulating this resolution would require
significant performance improvements (see above). Other than this, our simulation should be
able to handle this resolution of data without much extra modification, so provided the data, a
programmer with minimal experience should be able to apply this in a few days at most.

16

XII. Lessons Learned
Fully understand the project requirements before writing any code
Our project was difficult to fully plan because the details of hydrology and fluid dynamics are
incredibly complex, and even at the end of our projects, we still fail to fully understand the
details. However, we would have been better off if we had taken more time at the beginning of
the project to learn these topics better and understand exactly how we would implement them in
code. Specifically, we only really thought about how groundwater would play into the simulation
near the end of our project, and as a result, we needed to execute a major refactor in order to fit
this feature in. Had we put more thought into this feature in the beginning, we would have been
able to save more time in the long run.

Documentation means more than just commenting your code
The previous field session group that produced the starting point for this project had adequate
comments in their code, but it was still easy to get lost in the details of their program. It would
have been much easier to get oriented in their code if we had been provided a detailed general
overview of the purpose of each part of their code. For this reason, we will provide a readme
with our program which outlines the algorithmic structure of our code. This way, future
developers can easily orient themselves in our program before diving into the details of the
code.

The simplest solution might not be the best, but it’s a good place to start
There are many complexities in fluid dynamics, and starting our simulation was overwhelming
as we tried to consider every variable that might impact the flow of water. However, we
ultimately found that many of these complexities could be simplified to produce almost the same
result. For instance, at one point in our project, we tried to dive deep into how we could
accurately model the velocity of water as it moved down the hill. We were quickly overwhelmed
by the scientific details of this problem, but we found that we could still control the speed of our
water by simply adjusting the proportion of water moving from one cell to another during each
iteration. This approach was much simpler, and it still looks very accurate.

17

XIII. Acknowledgements
We would like to thank the following people for helping us learn about the development cycle
and advance our software engineering careers in this project:

● John Walker - Our primary point of contact at Walker Water.
● Leron Wells - A contracted developer at Walker Water, who supplied test data for us to

use in our simulation and helped inform decisions on the technical side of our project.
● Trevor Hirsche - The hydrologist we communicated with to develop a preliminary

iteration of groundwater analysis.
● Amelia Read - Our faculty advisor for the project who helped to facilitate group

retrospective meetings and guided our project’s development.

XIV. Team Profile

Luke Hart
Focus Area: Data Science
Hometown: Longmont, CO
Experience: IBM Chatbot Student Worker, ITS Consultant, Controller Operations
Hobbies: Guitar, Paddleboarding, Bowling

Nathan Howland
Focus Area: Data Science
Hometown: Durango, CO
Experience: Head of Project Management/Part Developer - Startup Company
Hobbies: Piano, Weightlifting, Golf

Chase McDonald
Focus Area: Computer Engineering
Hometown: Bend, OR
Experience: Software Engineering Intern at Tyler Technologies
Hobbies: Rock Climbing, Guitar

Cole Rincon
Focus Area: Computer Engineering
Hometown: Houston, TX
Hobbies: Hiking, Video Games

18

References
[1] “What is a watershed?,” NOAA’s National Ocean Service,

https://oceanservice.noaa.gov/facts/watershed.html (accessed May 19, 2023).

[2] “National Weather Service Glossary,” NOAA’s National Ocean Service,

https://forecast.weather.gov/glossary.php?word=catchment+area (accessed May 19, 2023).

[3] “How are UTM coordinates measured on USGS topographic maps?,” How are UTM

coordinates measured on USGS topographic maps? | U.S. Geological Survey,

https://www.usgs.gov/faqs/how-are-utm-coordinates-measured-usgs-topographic-maps.

(accessed May 19, 2023).

[4] “Snow Water Equivalent (SWE) – Its Importance in the Northwest,” U.S. Department of

Agriculture,

https://www.climatehubs.usda.gov/hubs/northwest/topic/snow-water-equivalent-swe-its-importan

ce-northwest. (accessed June 12, 2023).

Appendix A – Key Terms

Term Definition

Catchment Area In hydrologic terms, an area having a common outlet for its
surface runoff [2]

Watershed “A land area that channels rainfall and snowmelt to creeks,
streams, and rivers, and eventually to outflow points such as
reservoirs, bays, and the ocean” [1]

UTM Coordinates Universal Transverse Mercator Coordinate System - a plane
coordinate grid system named for the map projection on
which it is based, which consists of 60 zones, each
6-degrees of longitude in width [3]

Runoff coefficient (RC) A coefficient assigned to an area of land which approximates
the proportion of water that will ultimately reach streams and
reservoirs from that area of land.

Snow Water Equivalent
(SWE)

A measurement of the depth of water contained within snow
[4].

19

