
CSCI 370 Report

Jimmy Baldwin
Camden Lyles-Smith
James Vongphasouk

Revised June 13, 2023

CSCI 370 Summer 2023

Dr. Paone

Table 1: Revision history (for submissions)

Revision Date Comments

New May 17, 2023 Completed Sections:

I. Introduction

II. Functional Requirements

III. Non-functional Requirements

IV. Risks

V. Definition of Done

XI. Team Profile

Rev – 2 May 19, 2023 Updated Sections:

I. Introduction - added background information on Orderly and need for product

II. Functional Requirements - separated requirements into hard and nice-to-have
requirements

III. Non-functional Requirements - added subsections for qualities that product should
have

IV. Risks - labeled table

V. Definition of Done - revised to be echo of hard requirements

Completed Sections:

Appendix A - Key Terms

Appendix B - Tables and Figures

Rev – 3 May 22, 2023 Completed Sections:

VI. System Architecture

Rev - 4 May 26, 2023 Updated Sections:

VI. System Architecture - added more Figures to describe both back-end and front-end

components

Rev - 5 May 31, 2023 Completed Sections:

VII. Software Test & Quality

VIII. Project Ethical Considerations

Updated Sections:

I. Introduction - changed all Figures in section to tables and explained % correct range

II. Functional Requirements - changed all Figures into tables

1 | Page

IV. Risks - updated label name

VI. System Architecture - added keys to Figures

Appendix B - updated label names and orders

Rev -7 June 7, 2023 Updated Sections:

VII. Software Test & Quality - added software quality tests table and paragraph about

the ethical considerations if Software Quality plan fails. Need to add unit/integration

tests and get the results from them to put in the next section.

XIII. Team Profile - all profiles same size and format

Completed Sections::

IX. Results - need to finish getting testing framework

X, Future Work - flush out ideas more and be more concise

XI. Lessons Learned - expand on the lessons

XII. Acknowledgments - format text

Rev - 8 June 13, 2023 Updated Sections

VII. System Architecture - Updated to match final design and system

VIII. Software Test and Quality - added tests for the backend

X. Results - added results of the tests for backend and frontend

Appendices - updated table of Figures and added extra product setup instructions

2 | Page

Table of Contents
I. Introduction...4

II. Functional Requirements..5

a. Hard Requirements...5

b. Nice-To-Haves... 6

III. Non-Functional Requirements...6

a. Performance/Reliability.. 6

b. Quality.. 6

c. Security... 7

IV. Risks... 7

V. Definition of Done.. 8

VI. System Architecture.. 9

VII. Technical Design... 15

VIII. Software Test and Quality... 20

IX. Project Ethical Considerations... 25

X. Results.. 26

XI. Future Work...27

XII. Lessons Learned... 27

XIII. Acknowledgments... 28

XIV. Team Profile... 29

XV. References.. 30

XVI. Appendix A – Key Terms.. 31

XVII. Appendix B – Tables and Figures.. 33

a. Tables.. 33

a. Figures.. 33

XVIII. Appendix C - Development Setup... 33

3 | Page

I. Introduction
Orderly Health provides customers with accurate and accessible provider data through their service:

Orderly Provider Directory (OPD). OPD has up-to-date data about a provider such as their National Provider
Identifier (NPI), specialty, primary address, and primary fax information. To make sure that this data is high
quality, Orderly trains machine learning (ML) models on this data and tests their models against ground-truth
data or confirmed attested data. The data is phone attested through data attestors. Each data attester follows
a script provided by Orderly to confirm practitioner/provider information and if incorrect, gets the right
information. The process of getting the right information may involve more phone calls.

Currently, the attested dataset sent back from data attestors requires additional formatting to fit with
Orderly Health’s schema so it is hard for their data science team to update data points in their models.
Information like address should be validated during the phone call because an invalid address is useless, along
with invalid phone numbers, NPI, etc. Additionally, there were other areas to make the process more
streamlined to be more efficient and accessible. Orderly also uses an address Application Programming
Interface (API) to verify addresses which the team members of the group (TMs) have considered using in the
end product.

A snippet of the attested data with a practitioner’s primary specialty that is sent back to Orderly is
provided in Table 2. This is an example template of attestation data that data attestors would return to Orderly.
There are 3 other templates for address, primary address, and fax that are not included here, but look similar.
This method is efficient to get the attested data for each of the data fields, but Google Sheets does not have
strict restrictions on the data to be entered that make the data harder to ingest for the data science team. For
example, the “Validation Completion Date” is in the form,yyyy/mm/dd, but not every data attestors agent will
follow that standard and may input date in the form, mm/dd/yyyy.

Table 2: Example Monthly Attestation Template sent back to Orderly from data attestors

Willing to

participate

?

If

no,

is

ther

e a

bett

er

time

to

call

back

?

Name Do you have

practitioner(s)

by the name of

_______?

Fax Is this the

correct

FAX # for

this

location?

If NO, can

you

provide

the

correct

fax #?

[record

new fax]

Call

Quality

Validated Validation

Completion

Date

Comments # of

Calls

Yes John
Doe Yes 555555

5557 No 5555555
558 Good Yes 2022/08/19

reached
the
practitioner

2

4 | Page

Yes Jane
Doe No 555555

5559 Good Yes 2022/08/19

the
location
was no
longer
associated
with this
practitioner
so we did
not ask
about them
about the
fax number

3

No Jim
Doe

555555
5561 Yes 2022/08/19

line no
longer in
service

3

The main stakeholders are data attestors' agents because they are directly using the system to create
the attested data set, and Orderly’s Data Science team because they use the attested data set to create better
products. After the TMs has created a product, Orderly’s team of software engineers and data
scientists/engineers will take over and integrate it into their system.

II. Functional Requirements
Orderly requests an improved attestation system where the “ground truth” becomes consistent and

accurate leading to better ML models. The current system being used (spreadsheets and email) has some
benefits like having multiple agents editing one spreadsheet at the same time which is very productive and
that the agents are able to edit responses to questions “freely” as the phone conversation may direct to
different parts of data needing to be attested in nonlinear fashion. To summarize, the “spreadsheets and
email” system is easily accessible and flexible which the TMs have kept in mind as nice-to-haves.

The next two sections are the hard requirements that Orderly have accepted as a minimum viable
product and nice-to-haves which are not required in the product but nice to have.

a. Hard Requirements
A summary of the improved attestation system is that it is able to guide the agents through the call,

validate information at the time of the call, standardize the data collected, and create the attested dataset so it
is easily accessible for Orderly’s system. Orderly uses the Google Cloud Platform (GCP) for their applications
and they primarily use BigQuery as their data warehouse. The hard requirements are as follows:

● The improved attestation (front end and back end) system must work in Orderly’s system
● There must be documentation on the process to load the data to be attested
● data attestors must be able to sign in to keep track of who is attesting what data
● Any Application Programming Interface (API) secrets shared are to only be used in the backend
● Front-end specific

○ The data attestation user interface (UI) must allow data attestors agents to attest 4 points of
data associated with the practitioner:

■ Primary Specialty

5 | Page

■ Fax
■ Address
■ Primary Address

○ data attestors should be able to answer the fields in the attestation templates (example
template shown in Table 2) through the UI

○ There must be synchronization for showing which calls are being taken, and which call is being
handled by which data attestor

○ data attestors must have the ability to jump around between questions on the portal
○ Addresses, phone numbers, and zip code entries must be validated in real time on the portal

● Back-end specific
○ Local database stores data (attestation entries) from front end
○ Attested data must be compatible with the bq_snapshot schema and able to sync to Orderly’s

BigQuery
○ Attested data must be standardized for orderly’s ML algorithms
○ Attested data includes update timestamp for when data is validated for each practitioner in the

database
○ Orderly must be able to put together a new attestation document every month for data

attestors using the data stored in BigQuery and gathered from the data attestation UI

b. Nice-To-Haves
These features fall under the nice-to-have category as they are not required to satisfy Orderly’s request.

There may be more nice-to-have features that the TMs encounter while delivering the minimum viable
product, but the current list is as follows:

● Data attestors are authenticated through Google
● Data attestors can grant and revoke access to the portal to varying amounts of data attestors

throughout the day
● Backups of the local attested database exists

III. Non-Functional Requirements
These requirements are quality requirements to ensure that our minimum viable product follows a set

of guidelines to ensure Orderly is satisfied. These are separated into 4 categories of non-functional
requirements: performance and reliability, quality, and security. There are no non-functional requirements
involving cost, but the TMs were advised to reduce implementations that require using subscription-based
services or paid GCP services.

a. Performance/Reliability
These requirements determine how the product should respond throughout its lifecycle:

● Live user data displayed on UI (knowing which users are on) should be accurate and near real-time
● Website should be responsive and handle a large set of users at the same time

b. Quality
These requirements determine how the user experience should feel when using the product:

● data attestors should enjoy working with the UI as much as Google Spreadsheets

6 | Page

○ Representative data attestor has told us that he likes the SalesForce Lead’s System UI design.

c. Security
These requirements determine how the product stores sensitive information and adheres to standards:

● Data attestors should be able to record call results without sending links or permissions through email
● Database access should be flexible enough that client and data attestors can access different versions

of it

IV. Risks
For a five-week project, there are many risks associated with having enough time to learn the skills

needed to complete all the necessary features. The TMs have identified 7 possible risks and mitigation
strategies to prevent them in Table 3. If the risk does occur, the TMs have also included contingent actions to
help reduce the impact if the risk occurs.

Table 3: Risk Analysis Matrix

Risk description

Likelihood of

Risk

Occurring

Impact If

the

Risk Occurs

Severity

Rating Mitigating Action Contingent Action

The team will be unable to

implement a solution that

meets all the requirements

of back end updating and

processing

LOW HIGH HIGH

Maintain constant

communication with

Orderly, and keep them

updated on the team's

progress delivering code

periodically to ensure the

client's needs are being met

If the project begins to

experience scope creep and

exceed the team's capabilities as

the team develops more and runs

into more issues, consult the

storyboard to determine what

functionality is the most critical,

and consult the client with a

solution with reduced scope

Linking BigQuery and the

Structured Query

Language (SQL) database

will not be possible, or will

be substantially harder

than anticipated

LOW MEDIUM MEDIUM

Perform small instance

testing early on in the

development process to

determine early on if the

desired solution will be

unattainable, and have

additional methods of

linking local data with

BigQuery prepared

Consult the client and inform

them that the desired solution

will not be feasible, and offer

alternative solutions from the

methods prepared in contingency

The front-end UI will not

work with the desires of

data attestors and will

need

to be overhauled to better

suit their wants.

MEDIUM LOW LOW

Provide preliminary

mockups to data attestors to

illustrate the planned UI,

and continually gather

feedback on the progress of

the UI being flexible

Should data attestors be unhappy

with the UI, the team

can modify the looks or

functionality very easily, since

it will behave the same with the

back end regardless

7 | Page

to changes in the desires of

data attestors

of what it looks like - modify the

plans for the front-end

The client will introduce

new requirements for

the project that will

increase scope beyond

the capabilities of the

team

MEDIUM MEDIUM MEDIUM

Maintaining communication

with the client and ensuring

both the team and the client

are on the same page about

expectations, primary goals,

and stretch goals for the

project will be key in

reducing scope creep

Should scope creep occur, two

options will be present for the

team:

1. adjusting schedule to account

for new or changed feature

2. the new feature is too great to

be included in the project, so

negotiate with the client a middle

ground between full functionality

of the feature and the team's

ability to deliver the finished

product

The database schema the

team will be loading

data into in BigQuery will

change or be altered

during the lifetime of the

project

LOW MEDIUM LOW

Keep track of the schema

and be aware of when

it gets updated or modified

Modify the local schema and its

communication with BigQuery to

integrate with the modified cloud

schema

TMs will be unable to fully

learn and grasp new tools

and languages required to

complete the project (one

member currently

has extensive knowledge

of front-end JavaScript

frameworks, the others

only have rudimentary

knowledge of back end)

LOW HIGH MEDIUM

Hold check-ins at the daily

standups to ensure TMs are

able to learn their tools, or if

they require additional

support from other TMs to

expedite the learning

process

Pull TMs from the other team

into the team struggling (front

end to back end, or vice versa)

and collaborate fully on the

functionality causing struggles

V. Definition of Done
To complete the project, the TMs have created a minimum viable product (MVP) that aligns with the

hard requirements specified by Orderly. The MVP is the product that the client will accept with no additional
features, which will be restrained by time or complexity. The following features define the minimal useful
feature set which were summarized from the hard requirements:

● Compatibility with Orderly’s system
● Documentation for the process on loading attestation data
● Sign-in for data attestors to track who is actively making calls
● Application programming interface (API) secrets used ONLY in the back end
● Agents can attest primary specialty, fax, address, and primary address
● Agents can answer the fields in the attestation templates through the portal
● Synchronization for the calls being taken and which calls are handled by which agents

8 | Page

● Can navigate through questions nonlinearly
● Addresses, phone numbers, and zip code entries are validated in real time
● Attestation entries are stored in local database
● Attested data is compatible with the bq_snapshot schema and able to sync to Orderly’s BigQuery
● Attested data is standardized for Orderly’s ML algorithms
● Attested data includes update timestamp for when data is validated

The client will run a series of tests upon taking delivery of the product to ensure it meets the hard
requirements they have specified for the team, and to ensure no issues are present with the product that
would decrease its usability and functionality. Tests have primarily revolved around the features defined in the
definition of done:

● information is automatically populated when opening a record from the agent view
● confirming information updates the SQL database of attestations and records, if appropriate address

field autocompletes and suggests valid addresses
● date field is normalized and autocompletes to store the correct normalized value in the SQL database
● information entered in front end is received and stored in SQL database
● records can be updated in BigQuery based on attested data stored in SQL database
● practitioner data can be pulled from BigQuery into SQL database to be attested

The product has been delivered incrementally to the client in tech demos each week every Friday
displaying functionality developed and expanded upon that week, and has been open to feedback and
suggestions from the client. Code has been checked into GitHub repository before each tech demo, and
whenever large modifications are made to ensure proper version control and the ability for rollback if needed.
The completed product has been delivered in a final code check-in to the repository after extensive testing and
quality assurance.

VI. System Architecture
In our product, there are two main components (front and back) that interface with each other. Our

front end handles the user interface/user experience, user input to attest data, and user sign in. The front end
is built using JavaScript React, Firebase Realtime Database, and Google authentication.

Our back end handles the data processing from BigQuery to the GCS buckets, stores local attestation
data in a Cloud SQL database, and sends the local attested data back to GCS buckets for data analytics. The
Cloud SQL database is a MySQL transactional database that is used for the operations demanded by the front
end such as displaying the dashboard of records, information about those records, and sharing permissions.
The backend is built using the Java Spring Boot Framework.

In Fig. 1, the product is separated into server-side (back end) and client-side (front end). The backend is
composed of 5 major parts. These parts are the BigQuery Data Warehouse that has Orderly’s attestation data,
GCS buckets to extract the attestation data, MySQL database to store the attestation data to send to/receive
updates from the front-end, Google’s authentication services and Firebase Realtime Database. The front end is
composed of 3 major parts: login, dashboard, and questionnaire. Every user has to sign-in/authenticate
themselves before getting to the main dashboard. From there, the user can attest data in the questionnaire
which gets sent to the backend.

9 | Page

Fig. 1: Initial Front-end and Back-end Design

In Fig. 2, the back end contains the low-level flow of how the code makes the data flow. Initially, the
Orderly Health Developer dumps attestation data into Bigquery. Then, by using the Java Google Cloud Storage
Client, the attestation data goes from Bigquery to the GCS field session bucket to the backend application.
Next, the backend stores this data in the MySQL database sure to match the schema in Fig. 3, and sends it to
the client-side to attest using Java Spring Framework annotations. Finally, the back end receives the attested
data back from the client-side. To make this clear, the TMs have included numbered steps in Fig. 2 as well. The
code/methods next to the numbers are abstracted but they are the main methods that handle the data in the
backend. Fig. 2 does not include Google Authentication of Firestore because these are products that are only
accessible by the front end and are cloud services.

10 | Page

Fig. 2: Data pipeline from BigQuery to Client-side to GCS Updates

The schema for the SQL database in Fig. 3 contains 6 tables that are used to store information to work
with, where practitioner information is stored in a single source of truth, and each practitioner record owns an
attestation record of each type - address, specialty, and fax. For ease of use and simplicity in the MySQL
database, the schema has been flattened to contain JavaScript Object Notation (JSON) data types for the
columns that contain arrays in BigQuery (such as addresses, specialties, and state licenses). Two separate
tables contain information for permissions checking to ensure that users only have access to records they have
shared. The ‘user_records_permissions’ table contains rows consisting of a user’s uniquely generated
identifier, a practitioner’s NPI, and the type of attestation record that has been shared with this user; each row
represents a record and a user. The ‘admins’ table contains the unique identifiers of users who are granted
access to all records, such as our client at orderly, management at data attestors, or the TMs during testing.

11 | Page

Fig. 3: Schema for Attested Data

The following Figures describe a functionality map from point A to point B to describe the flow of the
product. We used Dia, a structured diagram designing tool, to help communicate different features in the
design. In Fig. 4, there is a separate key to show what each shape represents in the following Fig. 5-9. For
example, circles indicate the start of a section of each functionality map.

12 | Page

Fig. 4: Key for Fig. 5-9

In Fig. 5, the user has to log in and be authenticated by Google authentication. After that, the user is
presented with a dashboard and can do 5 different options: Select Record and Initiate Questionnaire, Get CSV,
Share Data, and Filter Records. Fig. 5 has abstracted these options, but their details can be found in Fig. 6-9
respectively.

Fig. 5: UI Flow to Login to Dashboard

In Fig. 6, a user can attest a record (practitioner information) after making sure the front end locks the
record in Firestore. This is to make sure no one else can edit the data at the same type to prevent duplicates or
corrupt data. After that, the data is loaded to the questionnaire from the backend and the user can attest the
data by filling out the form. This data is finally sent back to the back end and the Firestore record is unlocked.
There is also a sketch of what this looks like in Fig. 16.

13 | Page

Fig. 6: Questionnaire UI Flow

In Fig. 7, a user can also choose to download a comma-separated values (CSV) file to their local
filesystem for data lineage or validation of attestation records. The data from the back end is sent as a JSON
file, where the front end converts that data to a CSV file. Finally, the CSV file will be available for download to
the user.

Fig. 7: CSV UI Flow

14 | Page

In Fig. 8, the user can share data with other users and allow them to access that data. The user can
filter the shown users after fetching all users from the back-end database. The front end shows all users to the
current user and there are options to filter them.

Fig. 8: Share UI Flow

In Fig. 9, the user is able to filter the records by some data attribute of the record. This is to help the
user search for a particular record while on the dashboard. The filters array can have many filters at once and,
once the user is finished applying filters, the dashboard updates to show filtered records.

Fig. 9: Filter UI Flow

In the next section, these functionality maps are implemented into the actual UI.

VII. Technical Design
This section focuses on the technical design of the front end because the UI and user experience (UX) is

fundamental for any successful web application. In the words of the late Steve Jobs, “ Design is not just what it
looks like and feels like. Design is how it works” [1]. This section of the report aims to answer the
non-functional requirement under product quality. , “data attestors should enjoy working with the UI as much
as Google Spreadsheets.”

15 | Page

The next 7 Figures are created using Figma which is a software used to design interactive UI’s. To
convey the interactions between the different screens, the TMs decided to use a website wireframe to map
out the main features and navigation seen in Fig. 10. It takes the user from the login screen to the
dashboard/dash-open menu where the share popup, filter popup, questionnaire, and download CSV can be
reached. These features can be seen in more detail in Fig. 11-16 respectively.

Fig. 10: UI Wireframe

Fig. 11 is a simple login screen for users to sign in with a click of the blue button. The authentication
procedure uses Google authentication as a service by Firebase.

16 | Page

Fig. 11: Login screen

Fig. 12 shows how the dashboard presents the user with all the pertinent information for each of the
calls that they are assigned. By presenting the data in a SalesForce “lead” format, the user can glance at all
records like a spreadsheet. This also allows the users to jump between records with ease.

Fig. 12: Dashboard

Fig. 13 shows what happens to a user’s dashboard when the user clicks the orange arrow in the top left
corner. It shows a side panel view where a user can sign out.

17 | Page

Fig. 13: Dash-Open Menu

In Fig. 14, the user can see this popup when clicking the “filter” text. Some initial filters to help users
comb through the information are name, call date, status, etc. Once the filters are inputted, the user can click
the close button, and the dashboard is appropriately updated.

Fig. 14: Filter Popup

A user can check the boxes next to the records that a user wants to share with other users. Once a user
checks at least one box, the user can click on the share button. After it is clicked, the user sees a popup such as

18 | Page

in Fig. 15. Next, a user can check the boxes next to the users that the user wants to share. Finally, the user can
hit the “close” button to share the checked records.

Fig. 15: Share Popup

Fig. 16 shows the questionnaire form which mirrors the script of the attestors. From here, the attestors
can validate all information gathered. This format allows for an easy workflow, and allows for the data
gathered on calls to be uniformly formatted and validated to the backend.

Fig. 16: Questionnaire Screen

19 | Page

The last button the user can click on is the Download Spreadsheet button. Upon clicking, a user is
presented with Fig. 17 and can download address, fax, or phone attestation records as a CSV file for further
validation. There is currently no button to upload the validated attestation records, but it is noted in the Future
Work section.

Fig. 17: Download Record Files as CSV File

VIII. Software Test and Quality
Testing of the software is integral in ensuring the product’s quality, and delivering a well-rounded,

completed product to the customer at the conclusion of the project. Tests that are written and completed
before product delivery fall into three main requirement-based categories: testing of front end features and
functionality, backend data pipeline testing, and security testing.

Front end tests mainly consist of following the process of a data attestors through an attestation to
ensure each feature functions properly and the flow of the application allows the agent to complete the
attestation similarly to how they currently complete an attestation through the spreadsheet.

Testing of the back end data pipeline uses JUnit and integration testing to check values being passed
through the pipeline at each stage to ensure both its integrity and accuracy through the data acquisition and
upload process.

From the functional and non-functional requirements, the TMs have created tests to ensure they are
met in table 4. Some of the requirements are not necessarily testable such as “There must be documentation
on the process to load the data to be attested.” Our main categories of testing are Manual UI/Command Line
tests and code reviews.

Manual UI tests are to ensure that the product’s UI is friendly and functional, Unit/Integration tests are
to ensure that the code is bug free and handles edge cases of data, and code reviews are to keep the code

20 | Page

from smelling to Orderly’s engineering team. Note that these tests are not exhaustive, but helps to improve
the product as it gets closer to the definition of done.

Table 4: Product Tests

Test
name

Category Addressed
Requirement/Quality

Setup Action(s) Expected Result

Invalid
Email
Sign in

Manual
UI
Testing

data attestors must be able
to sign in to keep track of
who is attesting what data.
Having a valid sign in
process also ensures basic
security of data.

The front end
is running and
reachable
from the
user’s
computer.

1. User clicks on
the sign in button.
2. User is
redirected to
Google Sign in and
signs with invalid
email address.

User is
redirected back
to the sign in
page and is
presented with,
“Error: Must use
a valid email
address within
this
organization.”

Nonlinear
Edit
Record

Manual
UI
Testing

The data attestation user
interface (UI) must allow
data attestors to attest 4
points of data associated
with the practitioner:

● Primary Specialty
● Fax
● Address
● Primary Specialty

Editing a record should also
be as clear/nonlinear as
editing a cell in Google
Spreadsheets and it should
involve no sharing of
permissions or data through
email.

The front end
is running and
reachable
from the
user's
computer and
the back-end
REST server is
reachable
from the
front-end.

1. User signs into
dashboard view.
2. User clicks on
the “edit record”
text for a record.
3. User sees the
correct
information for
that record.
4. User attests the
information
displayed by
inputting into
form nonlinearly.
5. When the user
finishes attesting,
the user clicks the
“exit and submit”
button.

User is able to
finish the call
and attest the
information
even if the call
does not follow
the left-right or
top-down
question flow.

(near)
Real-time
Validation

Manual
UI
Testing

Addresses, phone numbers,
and zip code entries must
be validated in (near) real
time on the portal.

The front end
is running and
reachable
from the
user's
computer and
the back-end

1. User signs into
dashboard view.
2. User clicks on
the “edit record”
text for a record.
3. User sees the
correct

When User gets
to attesting
addresses,
phone numbers,
and zip code
entries, the
information is

21 | Page

REST server is
reachable
from the
front-end.

information for
that record.
4. User starts
attesting the
address, phone
number, and zip
code entries.

validated in
(near) real-time.

Locked
Records

Manual
UI
Testing

There must be
synchronization for showing
which calls are being taken,
and which call is being
handled by which data
attestors agent. This means
that the user data should be
accessible at near-real time
of us

The front end
is running and
reachable
from 2 users’
computers.

1. Two users sign
into the
dashboard view.
2. User one clicks
on the “edit
record” text for a
record.
3. User two
attempts to click
on the same “edit
record” text for
the same record.

User two is not
able to access
the record until
User one has
done one of x
options:

● clicked
“exit and
submit”
button

● closes
the
window

● back
arrow
button

● select a
new
record

Correct
data sent
from back
end to
front end
and vice
versa

Manual
UI
Testing

Local database stores data
(attestation entries) from
the front-end.

The front end
is running and
reachable
from the
user's
computer and
the back-end
REST server is
reachable
from the
front-end.

1. User signs in
and waits for the
dashboard view to
load.
2. front end
requests records
from
records/dashboar
ds endpoint.
3. Backend sends
the records to
display.
4. User edits the
first record and
hits the “exit and
submit button”

Dashboard view
should display
all backend data
that is not null
at step 3. After
step 4, User
should see his
edited record in
the dashboard
view.

22 | Page

Data to
attest can
be
uploaded
to web
portal

Manual
Develope
r
Comman
d Line
Test

Orderly must be able to put
together a new attestation
document every month for
data attestors using the
data stored in BigQuery and
gathered from the data
attestation UI.

The front end
is running and
reachable
from the
user's
computer and
the back-end
REST server is
reachable
from the
front-end.
Developer
can import
data using the
PopulateData
base.java file

1. All users logout
of web portal
2. Developer runs
the
cloud-sql-proxy
with correct
parameters
3. Developer runs
the
PopulateDatabase
.java file to extract
table data to a
bucket as a
newline delimited
JSON file,
download the
JSON file to their
local filesystem
and upload that
file to GCS MySQL.
4. Developer runs
the back end.
5. Developer
starts up the
front-end.
6. Users sign in
and see the data
that a developer
uploaded.

Developers
should be able
to extract table
data into a GCS
bucket as a
newline
delimited JSON
object. From the
GCS bucket, the
developer
should be able
to download the
JSON object
onto their local
filesystem and
into GCS MySQL
where the
backend can
display the
dashboard data.

Data that
is
attested
can
download
into CSV
for
validation
OR can be
download
ed from
GCS

Manual
UI Test

Orderly must be able to put
together a new attestation
document every month for
data attestors using the
data stored in BigQuery and
gathered from the data
attestation UI.

The front end
is running and
reachable
from the
user's
computer and
the back-end
REST server is
reachable
from the
front-end.
Connection to
MySQL exists
for backend

1. All users are
done attesting.
2. User clicks
checks boxes of
records that the
user wants to be
downloaded into
a spreadsheet.
3. User hits the
download button
next to the
attestation type
that the user
desires.
OR

A user can
export the rows
that were
checked off to
be downloaded
to a CSV file. A
developer can
export the data
from a MySQL
instance into a
GCS bucket for
machine
learning.

23 | Page

1. All users are
done attesting.
2. Developer logs
in to GCP and
navigates to SQL
instances
3. Developer clicks
on
"field-session-db”
which is the
MySQL database.
4. Developer clicks
on the export
icon.
5. Developer
specifies format,
data to export,
and destination
GCS bucket, and
clicks the export
button.
6. Developer
navigates to the
GCS bucket by
typing cloud
storage in the
search bar and
clicking on the
bucket with the
exported data.
7. Developer clicks
on the download
icon in the same
row as their
exported data.

Code
Reviews

Code
Quality

There must be
documentation on the
process to load the data to
be attested. The improved
attestation (front end and
back end) system must
work in Orderly’s system.

Latest code is
accessible to
all TMs
through the
GitHub
portfolio.

1. One TM will
write code for a
feature.
2. Another TM will
review code for
comments, logic,
and readability.

Code is
maintainable /
readable / bug
free for
Orderly’s
engineering
team.

24 | Page

The TMs decided to omit the unit tests from this table as they are testing basic functionalities that are
expected from a working product. It is important to note that these tests lie primarily in the backend and are
implemented using JUnit testing framework. The results of these tests and the tests in the table are in the next
section. The TMs did not have time to thoroughly conduct integration testing, but the many manual UI tests
achieved the same effect because it would be obvious when the data passed through our product was
incorrect.

IX. Project Ethical Considerations
The abundance of PII has become a goldmine for both individuals and malicious actors alike. PII

encompasses a wide range of sensitive data that, when mishandled, can have far-reaching consequences.
There are ACM and IEEE principles that are relevant in the delivery of our product. Then, the TMs consider
Michael Davis questions as it relates to our product. Finally, the TMs consider the ethical considerations for the
project if the software quality plan is not enough.

In the ACM Code of Ethics, principle 1.6 states, “... allow individuals to understand what data is being
collected,… , to give informed consent for automatic data collection,…” [2]. This relates to PII as these
providers have their information publicly available, but, as Orderly streamlines it, the provider may experience
unwanted privacy breach. For example, a provider may list their personal phone number as their contact
information and they are at risk of more people getting access to it. Also, in the ACM Code of Ethics, principle
1.7 states “... protect confidentiality except in cases where it is evidence of the violation of the law,…
information should not be disclosed except to appropriate authorities.” [2] . Similarly with privacy,
confidentiality of the data is important so that malicious parties do not obtain the data. Since our product is
using Google authentication to authenticate data attestors, these attestors need to provide the product with
their Google email accounts. Our product should keep this information confidential.

Additionally, in the IEEE Code of Ethics, principle 1.03 states, “Approve software only if it… does not…
diminish privacy” [3]. Our product which handles the direct privacy and confidentiality of PII data stores the
data directly in Orderly’s MySQL database. Only Orderly is allowed to access the portal and view the PII, so our
product does not diminish privacy.

The team thinks that the Harm Test and the Common Practice Test are the most appropriate when
handling PII. The Harm Test states, “does this option do less harm than any alternative? Do the benefits
outweigh the harms?” [4]. Our product which eliminates the need for email exchange of PII is better than the
current alternative because the current alternative uses emails and spreadsheets to exchange PII. The TMs
know that this project is better than the alternative because the product securely exchanges PII in the cloud.
The TMs also conclude no foreseeable harms that outweigh the benefits. The Common Practice Test states,
“What if everyone behaved this way?” [4]. Our product uses a friendly UI to input user info which the TMs
believe is what every software engineer would do.

If the software quality plan tests fail, then there are two major risks. PII can be compromised and
Orderly Health Google email accounts are leaked. The team sees these as preventable risks as long as we make
sure to have code that prioritizes security and privacy. We also need to make sure that our code passes the
tests in Table 4 as they ensure functional requirements are met.

25 | Page

X. Results
Our product passed each of the manual UI tests that were listed in Table 4. However, there is much

more testing to be done in terms of automated UI tests. Cypress, an automated JavaScript testing framework,
is one area that can improve the quality of our front-end functionalities. It can query for elements on a page
with a .contains() which can be very helpful for how many elements the dashboard view contains and it can
also make sure that a DOM (document object model) element is clickable with .click().

The manual developer command line test was also passed by our product which hopefully makes it
easier for Orderly to upload their attestation data to the web portal for data attestors to attest it every month.
The documentation of the data pipeline and its usage is a hard requirement so that Orderly can adjust the data
pipeline for different kinds of attestation.

As for the unit tests, Fig. 18 documents their results. The product used Gradle, a build automation tool,
to run the web portal and its tests. It also came with a convenient summary display to show the names of the
test classes, number of tests, number of failed tests, number of ignored tests, duration of testing time, and a
success rate for that test class. For example, the MillisecondsToDateTimeTests class had 4 tests that passed and
took 0.006 seconds to complete.

Fig. 18: Back-end Testing Results

As for code reviews, the TMs reviewed each other’s code as discussed in Table 4 and commented
confusingly nested for loops, truncated long one-liners, and refactored repeated code into their own classes.
This process made the product contain self-documenting code, as well as maintainable code for Orderly’s
Engineering Team to take over.

26 | Page

XI. Future Work
All of the hard functional and nonfunctional requirements were passed, but there were some

nice-to-haves that came up during the development process that the TMs could not get to with the time
allotted. Given that Orderly has their own engineering team, they can possibly work out some of these
nice-to-haves. These include an admin panel/view for Orderly engineers to enable/disable certain features
depending on the user, a UI overhaul that would make the product read more in a left-to-right direction,
in-depth security of user credentials, backups of MySQL database, live users in the side panel, and user
statistics. These components can be easy or medium difficulty to implement since most of these are front-end
fixes in JavaScript React Framework. Having backups of a database is a GCP issue where Orderly is well-versed
in. The team regularly asked Orderly’s engineers for assistance regarding GCP, so any GCP addons or tools that
can replace our components should also be considered as future work.

In terms of components that can be improved, we talked to one of Orderly’s engineers that work on the
backend and their main development language is in Python. The product’s backend is built on Java SpringBoot
Framework that works well as is, but the team would like to make it as easy as possible for Orderly’s engineers
to deploy our web portal. Django, Flask, or FastAPI are all great Python backend frameworks that can replace
our Java backend. The team’s recommendation is Flask since it is easy to start, well-documented, and popular
so that StackOverflow answers can be found. The front-end framework used can be swapped for other
frameworks as needed, but adding React components would be easiest if adding more features.

Last but not least, the feature to upload the validated attestation records back to the web portal for
storage in the MySQL database was not implemented. The attestation results are stored in MySQL and
available for download using the Download Spreadsheet button, but the validation columns are not. This
leaves data attestors to continue using Excel software for their validation. Alex, a representative for data
attestors mentioned that he would like to keep using that software to validate the data. Orderly can implement
a way for data attestors to upload the CSV such that the web portal parses the CSV and updates the MySQL
database based on the validation.

XII. Lessons Learned
Many lessons such as communicating our needs to the client and each other, delivering quality work,

and following an Agile development process were experienced during the duration of this project. All of the
lessons have one common crux and that is, to develop early, but ask questions even earlier because most of
the problems stemmed from not asking enough questions when the TMs had the chance.

For example, the TMs knew they were going to develop locally on our machines and not on GCP to
make it easier for all of us since the TMs know their own development environments. However, it is much
harder to deploy the product to the client since GCP has a lot of dependencies that the TMs did not consider.
Another example is when the TMs were implementing the backend infrastructure in Java and found out from
one of their engineers later that Python was the main language of choice for their backend. The TMs had
assumed that Python was not one of the options because the client had developed in Java prior, so the TMs
used a rather difficult language when the TMs could have used a higher level language or framework.

The TMs also learned that testing is very hard to do at the last minute as developing tests can
sometimes be even harder than developing the actual code. Test Driven Development (TDD) was
recommended to us by our Field Session lectures and advisors, but the TMs were too excited to just start
coding. If the TMs created failing tests to go with the features, the TMs could ensure quality much easier.

27 | Page

The two main takeaways from the many lessons learned are:

● TMs need to ask more questions before coding to ensure a smooth development process and
deployment process

● TMs need to do TDD to ensure quality every step of the development process

XIII. Acknowledgments
Dr. Paone is a Professor at the Colorado School of Mines that helped us facilitate ideas, learn the

important elements of software development in the field, and helped finalize this report document. Thanks to
Dr. Paone for giving up half his summer to progress in our academic careers. We learned a multitude of Agile
methodologies, ACM/IEEE ethical principles, software quality insurances, and overall software engineering
advice from Dr. Paone.

Mark Barkmeier is one of the clients from Orderly Health that also worked as a software engineer. Mark
answered all of our random questions throughout the project and connected us to the rest of the Orderly
team. Daniel Lockman is the other client and Vice President of the Engineering team at Orderly Health that
helped advise our project and facilitate demos with the company. He also helped us connect with the rest of
the company and gave feedback on our UI. Thanks to the clients for allowing us to learn from their tech stack
and professionally develop ourselves.

Another thanks to some of the engineers, managers, and designers who also gave us feedback on our
product and taught us software development skills which includes Sylvester Meighan, Micahel Cunha, Arielle
Kahn, and Megan Hart.

One final special thanks to Alex Wynn who was the data attestors representative that helped determine
how the end UI of the product would look since his agents would be the ones using our product.

28 | Page

XIV. Team Profile

Name: Jimmy Baldwin

Year: Senior

Discipline: Web Development

Hometown: Incline Village, NV

Work Experience: Freelancing Web Development, Marketing Web Development

Hobbies: Minecraft, Skiing, Painting, Playing Music

I wanted to build something that would be used to make an impact in people's lives. One of the best ways to do that is
through building out health care products. I love web development, so I can not wait to get started!

Name: Camden Lyles-Smith

Year: Senior

Discipline: Cyber Security

Hometown: Denver, CO

Work experience: landscaping, Whole Foods E-commerce, Stagehand, Certol Warehouse

Hobbies: Hiking, camping, playing guitar, working on cars

I’m looking forward to working with the team to help create a more streamlined system for Orderly Health’s data
attestation pipeline and working more with web applications!

Name: James Vongphasouk

Year: Senior

Discipline: Data Science

Hometown: Thornton, CO

Work Experience: Data Analytics, Data Engineering, Home Depot, Amazon Warehouse

Hobbies: video games and learning Natural Language Processing

I like health data and Orderly Health has a ton of it, so I’m very excited. Also I have no web development experience, so
this will be fun to be outside my comfort zone!

29 | Page

XV. References
[1] P. Gangadharan, “The importance of User Experience Design,” Medium,
https://uxplanet.org/the-importance-of-user-experience-design-988faf6ddca2 (accessed Jun. 14, 2023).

[2] D. Gotterbarn et al., “The code affirms an obligation of computing professionals to use their skills for the benefit of
society.,” Code of Ethics, https://www.acm.org/code-of-ethics (accessed Jun. 1, 2023).

[3] D. Editor, “Code of ethics,” IEEE Computer Society, https://www.computer.org/education/code-of-ethics (accessed
Jun. 15, 2023).

[4] M. Davis, “A General Approach to Ethical Problems ADAPTED FROM ETHICS ACROSS THE CURRICULUM MATERIAL.”
The Daniels Fund Ethics Initiative, https://cs-courses.mines.edu/csci370/Slides/EthicsFrameworks.pdf (accessed June. 6,
2023).

30 | Page

https://cs-courses.mines.edu/csci370/Slides/EthicsFrameworks.pdf

XVI. Appendix A – Key Terms
Includes a descriptions of technical terms, abbreviations and acronyms

Term Definition

API

Application Programming Interface - Mechanisms that enable two software

components to communicate with each other using a set of definitions and

protocols.

Attestation An official verification of something as true or authentic

BigQuery

Severless (no need to manage worker servers) fully-managed (by Google) data

warehouse tool to store “Big” data and query “Big” data.

Bucket A basic container to store data on the cloud

Cypress A JavaScript front-end automated testing tool

Django, Flask, FastAPI

Backend libraries similar to Java Spring Boot but for use in Python programming

language

DOM

Document Object Model - programming API for HTML and XML documents or the

logical structure of documents and how the elements inside the document are

accessed and manipulated

Firebase Realtime Database

Google Cloud service for simple authentication and database integration into

front-end applications

FireFox Web browser created by Mozilla

GCP

Google Cloud Platform - The cloud product Google owns and sells different cloud

services on.

GCS Google Cloud Storage

Gradle An automated build tool used to build and run tests

Ground-Truth The confirmed attested data used to test ML models

Java Google Cloud Storage Client A client for GCS to access the storage using Java

Java Spring Boot Framework Programming model for modern Java-based backend applications

JSON JavaScript Object Notation - JavaScript-compatible file format

Lead A person who is interested in the product or service you sell

ML

Machine learning- The process of building a system to learn from historical data

using statistics and computer science.

MVP

Minimum viable product - The end product which will meet all of the client’s hard

requirements

MySQL An open-source relational database management system

NPI

National Provider Identifier - A unique 10-digit identification number for covered

health care providers.

31 | Page

OPD Orderly Provider Directory - Orderly’s product to provide accurate provider data.

PII

Personally Identifiable Information - Information that can indirectly or directly

identify a unique person e.g: social security number (SSN), passport number,

driver's license number, taxpayer identification number.

Python High level programming language

SalesForce

Salesforce is a cloud-based customer relationship management (CRM) platform

that helps businesses manage their sales, marketing, and customer service

operations

SQL

Structured Query Language - A domain specific language used for managing data

held in a relational database management system

TDD

Test Driven Development - a software engineering practice where developers

continuously write failing tests for feature and write features such that it passes

the tests

TMs

Team members of the group - The three members of the team working on this

project

UI User Interface - What the user sees when interacting with the portal.

32 | Page

XVII. Appendix B – Tables and Figures

a. Tables
Table 1 - Revision History………………………………………………………………………………………………….1-3

Table 2 - Example Attestation Template…………………………………………………………………………………….5

Table 3 - Risk Analysis Matrix…………………………………………………………………………………………….9-10

Table 4 - Product Tests…………………………………………………………………………………………………..23-26

a. Figures
Fig. 1 - Front-end and Back-end Design…………………………………………………………………………………12

Fig. 2 - Back-end Detail Design…………………………………………………………………………………………..13

Fig. 3 - Attested Data Schema…………………………………………………………………………………………...14

Fig. 4 - Key for Fig.s 5-9……………………………………………………………………………………………….15

Fig. 5 - Dashboard UI Flow ..15

Fig. 6 - Questionnaire UI Flow…………………………………………………………………………………………..16

Fig. 7 - CSV UI Flow………………………………………………………………………………………………………16

Fig. 8 - Share UI Flow…………………………………………………………………………………………………….17

Fig. 9 - Filter UI Flow…………………………………………………………………………………………………….17

Fig. 10 - UI Wireframe…………………………………………………………………………………………………...18

Fig. 11 - Login Screen………………………………………………………………………………...………………….19

Fig. 12 - Dashboard Screen……………………………………………………………………………...……………....19

Fig. 13 - Dash-Open Menu………………………………………………………………………………………………20

Fig. 14- Filter Popup……………………………………………………………………………………..……………...20

Fig. 15 - Share Popup.…………………………………………………………………………………………...………21

Fig. 16 - Questionnaire Screen……………………………………………………………………………………...…...21

Fig. 17 - Download Record Files…………………………………………………………………………………………22

Fig. 18 - Back-end Testing Results……………………………………………………………………………………….27

XVIII. Appendix C - Development Setup
https://github.com/OrderlyHealth/csm-field-session-23

33 | Page

https://github.com/OrderlyHealth/csm-field-session-23

