
CSCI 370 Final Report

DECTechnicians

Braden Gehr
Trevor Hartshorn
Micah Munoz
Tyler Rotello

Revised June 16, 2023

CSCI 370 Summer 2023

Prof. Rob Thompson

Table 1: Revision history

Revision Date Comments

New 5/15/23 Started Sections:

I. Introduction
II. Functional Requirements
III. Non-functional Requirements

Rev – 2 5/19/23 Completed Sections:
I. Introduction
II. Functional Requirements
III. Non-functional Requirements
IV. Risks
V. Definition of Done

Rev – 3 5/26/23 Completed Sections:
I. System Architecture

Rev – 4 6/1/23 Updated Sections:
I. System Architecture (risks/difficulties portion)

Started Sections:
I. Software Test and Quality
II. Project Ethical Considerations

Rev – 5 6/2/23 Updated Sections:
I. Non-Functional Requirements

Completed Sections:
I. Software Test and Quality
II. Project Ethical Considerations

Rev – 6 6/9/23 Updated Sections:
I. Results

A. added current results
B. added tests still being implemented

II. Definition of Done
III. System Architecture

A. which design difficulties mitigated
B. added section for email architecture

Rev – 7 6/12/23 Updated Sections
I. Results

A. Updated results table
B. Modified tests/functions not implemented and summary of results

II. System Architecture
A. Added diagrams, email system

Added/Completed Sections:
I. Future Work
II. Lessons Learned
III. Acknowledgments

1 | Page

Table of Contents
I. Introduction... 2

II. Functional Requirements.. 2

III. Non-Functional Requirements... 3

IV. Risks... 3

V. Definition of Done...4

VI. System Architecture...4

VII. Software Test and Quality...6

VIII. Project Ethical Considerations... 9

IX. Results..10

X. Future Work.. 10

XI. Lessons Learned...10

XII. Acknowledgments...10

XIII. Team Profile... 10

References.. 10

Appendix A – Key Terms..10

I. Introduction
DECTech (Discover, Explore, Create with Tech) is a program founded by Dr. Tracy Camp and a group of her female

Mines Computer Science students to kindle the interest of children in STEM. Initially (and predominantly) targeting girls
in grades 3-6, but has since expanded into a wider range of grades and genders. The program still has the primary goal of
developing underrepresented groups in STEM; however, the client, Dr. Christine Liebe, believes that an overhaul of the
current registration system could greatly help the program.

The project goal is to streamline the registration service for this program, as the current registration system has
high labor requirements. Not only will the product ease the process for DECTech administration, but it will hopefully also
make the system easier for guardians/students to access, regardless of their registration interests. The product should be
able to take in the information of registrants, sort the information into rosters for the camps/programs automatically,
and be malleable, amongst the other requirements; malleable here meaning that DECTech admins should be able to
change questions and information within the website without excessive struggle. The foundation from the last team does
have admin capabilities; however, they must use PSQL to manually change information in the database and forms,
making the overall system unfriendly for common users. The new changes aim to make registration and confirmation
amongst guardians and administrators more efficient and less labor-heavy than before.

Currently, there is a GitHub repository that holds the foundation and initial steps taken by the last team who
worked on the project. They have made a login system and a test database which holds the guardian login information
and general guardian and child information. The team has expanded on this foundation, including additional forms to
acquire other necessary information, a FERPA-compliant Mines’ database, and other niceties that were requested by the
client (summary information and CSV outputs).

II. Functional Requirements
The first requirement of product development is that it must take in student and guardian information and store

that information into a FERPA-compliant database. Some of this was done by the previous team, which we have
expanded on, mostly by modifying the Mines server/general web page and database in which this data will be held and

2 | Page

collecting auxiliary information about the student and course they would like to register. This system must be able to
handle both registration for after-school (Fall) courses and summer courses, as well as being accessible by mobile device.
Along with that, the new form should collect and store the same information that is already collected. In other words,
the form should match the current Google forms that the website uses for registration. The product would automatically
fill rosters, preventing registration when a roster is full, as well as giving administrators copies of the rosters for running
the courses.

Along with storing information and giving roster output, Christine requested that the system send automated
emails to guardians to confirm their child’s registration and convey other information. After registering a child for the
program, an automated email would be sent using the email connected to the guardian in the database to confirm that
the child has been registered for the course. This email would also contain an embedded link to pay for the course
through the Mines’ system. Other automated emails would include information about the course, such as the time and
location of the course they would be taking, which would be sent closer to when the course is held.

The team was given some tasks that were not as high-priority by the client as ‘stretch goals’. The first is a CSV
output for the DocuSign process, in which guardians must electronically sign consent forms for their children. Another
non-priority task was a summary dashboard accessible by administrators, which would give them statistics about the
children enrolled, courses taken, and other information. The summary statistics would also be filterable by admins,
depending on what data they wanted to see.

III. Non-Functional Requirements
One of the most important non-functional requirements given to the team is that the database be FERPA

compliant. This is extremely necessary, as the information collected about the children enrolling in the program is
protected and dictated by FERPA, and not doing so would present legal troubles for DECTech and the Colorado School of
Mines itself. The database must be consistent and dependent, which the team dictated is out of our project’s scope and
would depend more on Mines’ ITS teams. This means that the database in which DECTech stores information about
registrants should be secure and reliable in the event that it goes down, and hold information about previous registrants.
This relates to another non-functional requirement, which is that once in the system, both guardian and child should be
able to register for future courses without having to re-enter their information.

Another non-functional requirement is that the overhauled web app should be administrator-alterable, without
the use of raw code. To make changes in the current foundation, an administrator would have to access GitHub or the
database and change the source code or use PSQL to manually alter information. However, Christine has requested that
the product be more malleable, such as being able to change questions and student information through the website
itself, not the source code. To go along with this, the altered codebase should be well-documented enough such that an
inexperienced or new team can continue the project without excessive difficulties, such as in the case that the team does
manually access the database or codebase.

Lastly, the web app should be somewhat similar to the current website design, if not more aesthetically pleasing.
This is extremely low on the team’s priority, as the team is more concerned with fulfilling requirements and getting a
working product that is as close to being able to roll out as possible.

IV. Risks
The risks that the team was most concerned about were the data privacy and compliance of the database. Since

the team was dealing with information about children, as well as login information about the guardians wanting to
register those children, the database and login system needs to be secure, safe from attacks, and FERPA compliant. The

3 | Page

greatest risk would’ve been the involuntary release of a child’s information due to an attack, such as a man-in-the-middle
or SQL injection attack. Another risk the team identified relating to the database was the general loss of data. The
DECTech team wanted this web app overhaul because the current system is inefficient for both guardians and
administrators. A general loss of data would be very detrimental to the efficiency of registration, as well as to running the
program overall. Administrators would then have to try to reform rosters and acquire information from the guardians
again.

Another set of risks the team identified related to the codebase and running the existing code itself. Since the
team was mostly unfamiliar with web development, as well as JavaScript, there were a few concerns that arose. Firstly,
being able to familiarize ourselves with and run the existing code generated by the previous team was imperative to the
project. If the team was unable to do this for any reason, such as poor organization or documentation of the existing
code left by the last team, the team would be unable to complete the project in any timely manner, if at all. Another risk
of being unfamiliar with the existing code and JavaScript included involuntary software degradation. It was a possibility
that the team could cause the existing code to fail, meaning that not only was progress on the project not made but
there were actually steps taken in the reverse.

V. Definition of Done
A minimal goal for this project is to flesh out the existing foundation formed by the previous team and get the

website as close to rollout as possible, if not ready. To be more specific, the minimum the team would consider ‘done’ is
new/modified forms that would take in the same information as the existing Google forms (information that is needed by
the DECTech team). These forms would have to input this data into a database that the team has made. This database
will be FERPA compliant and be run through Mines itself since DECTech is a Mines program. The database and
information should be administrator modifiable through the website, instead of the current manual access system. The
database will then be automated in a few ways: emailing and roster formation. The automated emailing system will both:
email guardians confirming their child’s registration (and sending them the link for payment through Mines after filling
out the forms on the website, and email guardians course information, including time and location, closer to the course
start date. The automated roster formation will be performed within the database, which is how the seat cap will be
applied and will be able to be output in CSV form. The administrator page should also be mostly functional, which ties
back to the database/information being administrator modifiable in the website.

VI. System Architecture

General Architecture/Process Diagram

The general system architecture for the project involved the web page for users to interact with, which interfaces
with the database to store their information and register them for classes. The web page allows users to create their
accounts, add their children to their accounts, register them for after-school or summer classes, or update any of their
information. This web page uses ExpressJS to update the database, as well as display the information the user has in the
database already. As stated previously, the foundation of this project was laid out by the previous team, which was
mostly login and registration capability. This means that the architecture specifically built by our group is adding to this
system, including modifying the registration forms and making them modifiable by admins, adding features, such as
when users forget their passwords and an auto-emailing confirmation system, adding an admin page, in which admins
can edit information currently in the database (guardians, children, classes, etc.), view the info in the database with
settable filters, and download the CSV files needed for rosters and DocuSign or view summary statistics.

4 | Page

The process diagram in Figure 1 below illustrates the general process that a user would experience when
entering the web page. This process diagram is a modified version of the last team’s [1], as they were mainly focused on
the login and general information section. Our team added the admin split from the guardian login, as well as some
other minor changes, like info/registration changes and the email system. Now, when logging in, the back end checks
whether the user logging in is an admin or instructor, in which case it transitions them to the admin page instead. This
page includes options for administration, such as changing information within the database or accessing the statistics
and CSV downloads. In the case that the user is a guardian, from the work done by the previous team, they would be
prompted to sign in/create an account (prompting a verification email) and then add or change their child’s info. They
would then also be able to access the registration form, leading to a confirmation email as well.

Figure 1: Process Diagram [1]

Database Architecture

Figure 2 below visualizes the current and modified version of the database. The previous team left us with some
PSQL that establishes entities within the database: child, parent, and class, as well as a portion of the codebase that
deals with editing those tables [1]; however, our team has decided to add 3 flags: Guardian, Admin, and Instructor. As it
stands, the team is only adding those 3 flags, though we did consider modifying the database in different ways, such as
breaking down/normalizing the entities, or adding two separate entities for Admin and Instructor; however, after

5 | Page

consulting with the previous team’s proxy, Emily Hime [1], she advised that we keep the database as simple as possible,
as to avoid confusion for future management or team members; therefore, we only added flags to user (renamed from
parent) to differentiate between guardian, instructor, and admin users.

Figure 2. ERD of the DECTech Schema

Emailing Architecture

Figure 3 below illustrates the flow of system calls in order to automate the emailing system, more specifically for
resetting passwords. This system promptly sends emails when a user requests/performs certain actions. For example,
requesting to reset their password (if they’ve forgotten it) or after registering their child for a DECTech course. It was
requested that these emails be sent through the stem-tech@mines.edu distribution group for consistency and
professionalism.

6 | Page

mailto:stem-tech@mines.edu

Figure 3. Flow Diagram for Resetting Password

A similar process can be followed for sending the confirmation emails, in which after a user registers their child, a
connection to the smtp.mines.edu relay server is established and a NodeMailer (see Appendix A) transporter sends the
email telling a user that registration was successful. This email is also sent through the stem-tech@mines.edu
distribution group handle.

Design Difficulties

One of the design difficulties the team faced was getting access to a Mines’ server in order to establish a
database and test remote connections, as we were only running locally and testing everything on local databases,
without knowledge of if remote connections worked. This was resolved by contacting the previous team’s proxy (and
former DECTech member) Emily Hime, as we did not know that they had already established a PSQL schema in the
Mines’ codd.mines.edu(See Appendix A) server. The team was also able to get a VM allocated by the Mines’ HPC (See
Appendix A) Server Team, which allowed for separate remote access.

The team also faced difficulties regarding the emailing system. In order to perform tasks like automated email
confirmation when registering a child or password reset, we thought that we needed access to SMTP(See Appendix A)
emailing systems like MailChimp (see Appendix A) or SMTPjs since JavaScript cannot interface with SMTP ports directly.
The DECTech team uses a paid MailChimp subscription for mass-distributed emails but wanted to reserve that system for
bulk emails and marketing. Through contacting ITS, the team learned that using the stem-tech@mines.edu distribution
group is possible by routing emails through the smtp.mines.edu relay server. This meant that using NodeMailer (without
authorization) and no third-party system was possible as long as the machine sending the email was connected to the
Mines’ network.

Another significant, and arguably more urgent, difficulty that the team faced relates to the existing codebase left
to us by the previous team. A large portion of the tasks requested of us could utilize existing framework modules to
simplify, such as password reset; however, some of the codebase is either written in a way that does not support the
framework capability or uses different (typically manual) methods. The team chose to continue the existing codebase
design, following similar methods to implement our functionality manually.

7 | Page

mailto:stem-tech@mines.edu
mailto:stem-tech@mines.edu

Component List

The entire application is highly interactive, but at a high level, a developer can think of the VUE (see Appendix A)
files being the frontend implementation, and the JavaScript files being the backend, with serve.js containing all of the
Axios (see Appendix A) server calls that make the requests from the frontend.

Pre-Existing/High-Level Overview (*See previous team’s report for more details on existing, if needed)

The main.js file creates the web app using App.vue and mounts it in the register.html file. The App.vue file is
what manages the .vue files, receiving the calls to switch VUEs and some other minor functionality. First, database.js is
the file that establishes the database, creates the user, child, and class tables as well as their cross-references, and holds
the functions that query the database and add/change information within the database. userAccounts.js handles most of
the data and functionality relating to the users’ accounts, their children, and encryption. The .vue files interact with these
javascript files as follows:

● registerHome.vue
○ Page that the user sees upon clicking ‘register’ from the homepage. This page prompts the user to

either login or signup, depending on whether they are a new or existing user.
● signupForm.vue

○ This is the page that the user sees when they choose to signup if they are a new user. This page only
prompts them for the name, primary email, and password to create a basic account.

● loginPage.vue
○ This is the page that the user sees when they choose to log in, prompting them for primary email and

password to sign in. There is also a forgot password function (see next section)
● loggedInPage.vue

○ After signing up or logging in, the user is brought to this page. Depending on the permissions, a user will
have 4 or 5 different buttons: updating user info, updating child info, adding a child, registering a child,
and, if the user is an admin, a button to access the admin page.

● updateChildren.vue
○ This page has all of the child informational fields, filled with the information already within the database.

The information is alterable and after submission, will call the server to update the database.
● updateUser.vue

○ Similarly to the updateChildren.vue, this is where a user may update the information they have in the
database.

● registerForm.vue
○ This is the form that a user will select which child is being registered, the class type and class itself, input

any educational/additional information, and sign to submit and register their child.
● classRegistrationForm.vue

○ (Left by the previous team; however, we do not see any interactions) It seems that this file is a file that
the previous team created as a separate form. It collects the same information as registerForm.

● childInfoInput.vue
○ This is the form a user sees when adding a child. It prompts the user for the child’s name, educational

challenges, etc., and calls the server to push the information to the database.
● fullRegistrationForm.vue

○ This file exists only in the mono repository (not in the previous team’s repository), which handles a few
of the Mines’ CS websites; however, we may decide to add it to our repository as well. This is a full user
form which is essentially a mirror of the Google form that the DECTech team is currently using. This is a

8 | Page

bypass of the account creation system made by the former lead intern, Emily, to see if rollout was
minimally possible.

Note: The vue files may have been minorly altered; however, the main changes were made to database.js,
userAccounts.js, App.vue, and the files added, which are detailed in the next section.

Altered/Added Components

The added the system calls and functions to handle the functionality we were asked to implement in the
JavaScript files detailed above, as well as serve.js. In database.js, we implemented the changes that we made to the
schema, including changing the name of the parent entity to users (and refactoring all of the related calls/queries), and
adding attributes to users, such as the flags for admin and instructor. We also added functions for querying/updating the
database from the admin’s submissions on the admin page, as well as the functions to query/update the database for
the reset password functionality, notably token storage and password update on the database side. userAccounts.js has
added functionality for password reset/encryption, which calls the functions previously referenced in database.js, as well
as the functionality for sending the confirmation email after a user has registered their child. We’ve also added
resetPass.js, which mostly handles the functionality for the forgotten password system, like checking if a user is valid and
generating the token for validation. The added VUE files interacting with the existing and altered JavaScript files are as
follows:

● admin.vue
○ This was technically existing when the team joined the project; however, only had “This is the admin

page!” This page displays the options for an admin when joining, which the team implemented the user,
child, and class manual information access and update with filtering.

● adminClasses.vue
○ This is the page where the admin may filter, view, and update class information manually.

● adminChild.vue
○ This is the page where the admin may filter, view, and update child information manually.

● adminUser.vue
○ This is the page where the admin may filter, view, and update user information manually.

● forgotPassword.vue
○ This page is linked to the login page. It prompts a user for the primary email of their account and

validates the email provided. If the user exists, it will make the server calls to begin token generation.
● resetPassword.vue

○ This page appears after a user has provided an email to forgotPassword.vue. It prompts them for the
token emailed to them, as well as a new password (two fields for matching password). This page makes
the server calls to match the token and push password changes if validated.

Note: Again, the VUE files are mostly just frontend, whereas the functionality was implemented through the Axios calls in
serve.js and the new implementation in the different JavaScript files.

9 | Page

VII. Software Test and Quality
Note: The team is also using the unit tests(See Appendix A) the previous team implemented that are still in the
codebase.

For example, the general registration test and login test were slightly expanded upon by our team. They also had other
unit/component tests (See Appendix A): registration test, edit account information, class list, downloading spreadsheet,
login test, encryption test, and API test. These tests are fairly self explanatory by name, but their descriptions are as
follows[1]:

Registration Test “Check that parent and child information can be queried in the database after

registering”

Edit Account Information “Check that the database gets updated when a user changes the parent or child
information associated with their account”

Class List “Checks if the registration form can correctly display the available classes read in from a
file”

Downloading Spreadsheet “This will test if information from the database can be extracted and put into a readable
form”

Login Test “This will test that users will get their information back when they login”

Encryption Test “This will test that passwords are stored in encrypted formats”

API Test “This will test if the database is updated upon requests and that Http requests are
handled”

Our tests are as follows:

Name Purpose Description Tools

Used/Type

of Test

Desired/

Acceptable

Result

Edge Cases Result

Admin

Creation

Test

Test admin

creation and

population

When an admin is created,

it should be stored with

correct flags. Additionally,

an admin should have all

of the correct information

pushed into the database.

Unit Admin is

pushed into

the database,

and the flag

is set

correctly.

An admin may be

a guardian as well,

in which case both

flags should be set

Pass, Admins

are stored in

the database

correctly,

when the flag

is set

manually

10 | Page

General

Registration

Test

Test child

creation and

form input

When a child is created

and form filled out, the

child should be pushed to

the database and

cross-referenced with a

guardian (and class, if

appropriate). The

database should have this

information inserted.

Unit,

Component

The child and

cross

references

should exist

in the

database,

matching the

info that was

inserted.

A guardian could

attempt to

register a child

twice, in which

case a second

cross reference

should not be

made

Pass, Child

creation

pushes data

into the

database,

registration

also pushes

to the

database.

Child cross

references

guardian and

class (if

registered).

Form /

Information

Alteration

Test

Test the

functionality of

form/question

changing by

admins

When an admin changes a

question or information on

the form or for a class, the

form should update and

those updates pushed to

the database. This should

appear for all users on the

refreshed page.

Component The form

should

update on all

ends,

including any

users who

view the

form after

the change.

This should

result from

the question

being

changed in

the database,

or in the VUE

file itself.

The question or

class on the form

could be altered

while someone is

viewing the form

(Partial Pass)

Admins are

able to alter

the

information

of guardians,

children, and

classes;

however, the

filter

functionality

should be

further

tested. The

team was

unable to

develop

manual form

question

changes

without

changing the

code in the

repo.

11 | Page

GUI Test Test the GUI

acceptability

and

functionality

Make sure that the Admin

GUI is acceptable for the

client, and that the

buttons on the Admin

page lead where they are

supposed to.

Component,

Client

Review

The client

should

accept the

GUI and the

correct VUEs

loaded when

prompted

Buttons can be

spammed,

dragged, etc. in

which case the

VUEs should not

break

Pass, Client

has accepted

GUI for

general login

page, and

admin page.

Buttons on

both pages

route to

correct VUE

files.

Login Test Test user login,

both admin

and guardian

Ensure that logging into

accounts gives access to

correct pages/buttons

(admin-flagged users have

access to admin pages,

guardian flagged users

have access to guardian

pages).

Component The guardian

flagged

buttons

should only

appear for

guardians,

and admin

flagged

buttons for

admins

Again, a user can

be both guardian

and user, in which

case all buttons

should appear and

be accessible

Pass, general

login page

shows

options to

add child,

register, etc.

but only

admins see

the button to

switch to

admin VUE.

12 | Page

Forgot

Password

Test

Test that the

forgot

password

feature is

functional

The forgot password

feature should only work

for emails registered to

existing users. Additionally,

the emails should be sent

automatically, with the

new password being

inserted into the database

correctly and the new

login working afterward.

Component The forgot

password

pages should

load, and

have

email/new

password

entry, which

should result

in a correct

password

reset.

Non-registered

emails may be

entered, and new

passwords

entered may not

match, neither

case should allow

password reset.

Pass, once

users are

verified as

existing in the

system,

automatic

emails are

sent with

token

information.

The tokens

are hashed

and stored in

the database

and when a

user

re-enters the

correct token,

their

password is

reset.

13 | Page

Automated

email test

Test that the

automated

email system is

functioning

The email system should

automatically send emails

to users after they register

a child. It should also send

emails closer to the time

at which the class occurs

with relevant information.

Unit,

Component

The emails

should be

sent to

registered

users after

child

registration,

close to class

times in

which

children are

registered,

and when

requesting a

password

reset.

A guardian could

have multiple

children

registered for the

same course

(Partial Pass)

Emails are

sent to

Guardians

after

registering

their child.

This includes

which child

was

registered

and for which

class. We

were unable

to implement

the reminder

email system

that sends

emails to

guardians

closer to the

time of the

class

CSV

Download

Test

Test the

download links

for CSVs

The links to download the

CSVs on the admin page

should download the

stated CSV, with the

pertinent information. This

should also be possible for

previous years.

Component The CSVs

should

download

correctly,

with each

CSV being

linked to the

correct

information

A user could

request to

download

multiple CSVs at

once

Pass, links on

admin page

allow for CSV

downloads of

rosters, full

guardian list,

etc.

VIII. Project Ethical Considerations
The project must align with the IEEE Code of Ethics, the ACM Code of Ethics and Professional Conduct, and FERPA, and
the appropriate ethical considerations are listed below.

1. Storing the information of minors/general information
a. FERPA, IEEE 2.05/3.12. (Keep confidential information private in accordance with public good and law),

ACM 1.6 (Be private with sensitive information and keep information usage legitimate).
b. Since the system is storing sensitive information in guardian accounts, it is crucial for the team to keep

this information secure and private, as with any good database practice. This is especially true since it

14 | Page

also stores the information of their children in this educational program, which makes it important that
the educational and personal records of these children are stored securely by the Family Educational
Rights and Privacy Act (FERPA).

2. Ensure password/account security
a. IEE 3.12/3.14 (Data privacy and integrity), ACM 2.9 (Developing robust and secure systems)
b. Given that these accounts are used to register children, store both guardian and child information, and

view information about classes (in general, and which classes a child is registered in), it is important that
accounts stay secure, especially through the encryption of the account login information.

3. Consistency with the current DECTech team and system
a. IEEE 3.06 (Follow professional standards), ACM 2.3 (Respect existing rules of professional work)
b. Since the DECTech team is established and has its own method of conduct, the product must align with

its methods and procedures. As in, the DECTech team should not have to greatly alter their standards or
procedures in order to use the product.

4. Proper documentation and readability of code (for future teams/management)
a. IEEE 3.11 (Adequate documentation), ACM 2.1 (High work quality)
b. Since we are an inheriting team, we especially know the importance of well-documented code. This

codebase may again be passed on to a future field session team, or a progressing DECTech team, and
therefore should be well documented in order for that team to produce good quality and timely code. If
our code is not well-documented, this will produce delays, confusion, and possibly even code
degradation.

IX. Results
Summary

*See Section VII. Software Test and Quality for full results

The team was asked to continue the work of a previous team to make the website and new registration system
for DECTech as close to rollout as possible. Specifically, we were asked to make admin accessibility, password
management, and automatic emailing a priority. The website allows guardians to create accounts, add their children to
their accounts, update child and guardian information, and register children for specific courses. The tests for populating
these entities and their cross-references, both automatic and manual, have passed such that the account creation system
and registration system are essentially complete, including both admins and regular users. After discussions with the
client and her proxies, it was determined that the instructor population is a nicety, but is not necessary for functionality.

The automated emailing system, including the functionality for resetting user passwords, has been completed
and tests passed. Emails are automatically sent when a user registers their child and when they request a password
reset. The emails are successfully sent through the stem-tech@mines.edu distribution group handle, since we used the
smtp.mines.edu relay server, as detailed in the System Architecture section.

We have also further developed the admin page, which was left mostly barebones by the last team. The VUEs
are developed; however, further testing must be done to ensure that the filters work such that information access is
completely functional (some of the filters have some bugs, but are mainly functional). The admin page allows the manual
information change of guardians, children, and classes; however, due to time limitations, we were unable to achieve
manual registration, form question alteration, and the summary dashboard.

Essentially, the account creation system and registration are complete. The tests for GUI and VUE switching
passed, as well as the tests relating to accounts and registration. The front-end VUEs successfully interact with the
back-end VUEs through the Axios calls interacting with NodeJS (see Appendix A). This means that the data is correctly
pushed to the database (passwords and tokens being hashed first). General information (such as rosters, full information,
etc.) access and alteration is successful; however, more development for the admin page should be done, not necessarily

15 | Page

mailto:stem-tech@mine.edu

for functionality, but for admin convenience. The new system works, but some niceties could be implemented for admin
and guardian convenience. Therefore, the minimal implementation needed is the SSL certification for the web page,
which is the only item preventing the new system from going live. The next section details the partial pass or no result
tests.

Partial Pass/Did Not Get To
The admin page filter system needs to be further developed and tested, as the filters will occasionally not work

quite as intended, but do produce the correct (filtered) results a majority of the time. For example, the filters will

occasionally switch what tags the information is being filtered on, if the tags have the same data type. Additionally, the

time filter is not properly comparing time formats. The admin form alteration (question-wording, not data intake), as well

as manual registration, should also be further developed as the team was unable to get to that functionality. Lastly, the

team was unable to implement the automated reminder emails closer to the time in which courses are being held.

X. Future Work
To get the website fully functional, the team believes that more development must happen, specifically regarding

website security. For example, we believe that more testing, and likely even consulting with those more experienced with
web security, such as the Mines’ data privacy team, should be conducted to make sure the website is as secure as
possible. Once again, since the educational information of minors is being handled, this website must be FERPA
compliant and extremely secure. Another aspect of the security that the team was unable to resolve is the signed SSL of
the implemented web pages. Currently, when the developed VUE files are pushed to the live website server, users are
prevented from interacting with the login and registration system, as it lacks a certified SSL certificate. The SSL certificate
is what identifies the connection as secure and encrypts the data that is passed between the website and the server it is
being hosted on. The live website has an SSL certificate which we initially believed would also cover our developed VUE
files which live within one of the website’s HTML files. The team also explored self-signing an SSL certificate, though
neither method worked. We also think that further consultation with more experienced security teams could resolve
this.

Another aspect of the website that we believe could be further developed, while not technically necessary for
the registration system to function as intended, is the form modification system. The admin page that we developed
mostly supports general information retrieval and modification; however, it cannot change questions on the form
(wording, dates, etc., not what data is collected). A manual registration system could also be fleshed out, such that admin
can manually assign children to classes if their guardian cannot do so, for any reason.

The team, along with Emily, also thought of a few functionalities that could be implemented as niceties, or just to
make the system a bit more efficient. First, implement a tab for users to see what classes their child is enrolled in, along
with the confirmation email. Relationally, having an automated email for summarizing the enrollments, either daily or
weekly, could be implemented. We also believe a back button on a lot of the pages would probably be nice to have.

*Future teams: see the website code review document, as well as the other documentation included in the Google folder,
for more detail and functionality on future work/bugs/unimplemented features.

XI. Lessons Learned
One of the most significant lessons we learned as a team is that familiarity with your codebase is vital. There

were a few problems that we encountered that could’ve likely been avoided had we been more familiar with the existing
workflow, and how the previous team connected all of the files. We also spent a lot more time than we would have liked
trying to understand the previous codebase and some of the systems they had set up since they had only provided us
with a general overview of the files’ functionalities, and minimal commenting. Therefore, we tried to apply this by

16 | Page

including more commenting, and hopefully more documentation than we were provided, such that an inheriting team
should be able to work a bit more efficiently.

The team also learned just how important structure and management are for high-quality development. There
were a few times in which the team failed to follow the AGILE/Scrum process, and we were both confused and
disorganized when trying to proceed with the project. This resulted in time wasted and poor quality code, since we didn’t
know who was working on what, nor what was supposed to be prioritized.

XII. Acknowledgments
The team would like to thank Emily Hime, a former lead intern for DECTech, as well as the previous team’s proxy

for Dr. Liebe, as she helped us tremendously throughout the whole process and continuously encouraged us with
check-ins and suggestions of areas to focus on. We would also like to thank Dr. Liebe herself, as she was wonderful to
work with, helping us with connections (like with Emily and the previous team) and being extremely communicative.

Lastly, the team would also like to acknowledge how helpful our advisor, Rob Thompson, and Tree
Lindemann-Michael were during this whole process. Through giving us advice on connections, and general process
advice, they were a great help overall.

XIII. Team Profile
Braden Gehr

● Computer Science major at Colorado School of Mines
● Born in Modesto, California, and grew up in Louisville, Colorado
● Work Experience pertaining to Computer Sciences: None
● Hobbies: Reading fantasy novels, going on a run

Trevor Hartshorn

● Computer Science Major
● Grew up in Bethlehem, PA
● No relevant work experience
● Hobbies: Reading, creative writing, drawing, video games

Micah Munoz

● Computer Science Major, Minoring in Computational and Applied Mathematics
● Hometown: Sacramento, CA
● Work Experience: N/A
● Hobbies: Powerlifting, Cooking

Tyler Rotello

● Computer Science Major
● Hometown: Lone Tree, CO
● Work Experience: Mobile App Dev., IT DB work
● Hobbies: Climbing, Reading, Math, Basketball

17 | Page

Previous team: Anna Pitcock, Audric Wang, Audrey Powers, Natasha Bailey,

Working alongside previous team: Emily Hime

References

[1] E. Hime, A. Wang, A. Pitcock, N. Bailey, and A. Powers, DECTechTives, rep.

Appendix A – Key Terms
Include descriptions of technical terms, abbreviations, and acronyms

Term Definition

HPC The High Performance Computing department at Colorado School of Mines

SMTP Simple Mail Transfer Protocol, TCP/ICP protocol for sending/receiving mail

codd.mines.edu Mines’ PSQL host.

Unit Test Test implemented in the codebase to automatically test a feature of the project,
typically back-end.

Component or Procedural Test Test that is manually performed to ensure that features work as intended,
regardless of back-end implementation.

NodeJS Event-driven JavaScript runtime for building/expanding network applications.
This is the engine for the web page, allowing for interaction on Mines’ servers.

Axios HTML Client for NodeJS, driving server calls

VUE JavaScript interface for user interaction. (i.e. lives within the registration HTML,
allows users to submit information, etc.)

MailChimp Bulk emailing system that follows SMTP, paid service

NodeMailer SMTP transfer service for NodeJS, takes host server, port, and authorization
(optional) to send mail on a transporter object.

18 | Page

