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I. Introduction

In the rapidly advancing realm of technology, our team took on a project posed by Stratom to pave the way for the

automation of vehicle refueling by developing a system that can accurately recognize fuel caps on vehicles, ensuring a

seamless and efficient refueling process.

Project Scope and Goal

Our project's high-level scope involved the integration of cutting-edge technologies to enable autonomous vehicle

refueling through the recognition of fuel caps. By leveraging machine learning (ML) algorithms and the capabilities of a

RGBD (Red Green Blue Depth) camera, we aimed to create a system that can not only identify fuel caps but also provide

real-time information to facilitate automated refueling procedures

Client and Motivation

Stratom, a prominent player in the automotive sector, is the driving force behind this endeavor. Recognizing the potential

for automation to transform traditional refueling processes, Stratom envisions a future where robot arms can

autonomously identify fuel caps and initiate refueling, streamlining operations and reducing human intervention.

Existing Software RevisionsHumble

While previous iterations of software might exist in the domain of computer vision and ML, our project introduced a

novel approach by integrating these technologies with the ROS2 [7] Humble framework. By doing so, we brought

together the power of robotics and AI, expanding the potential applications of both fields. The need for continued effort

arises from the desire to bridge the gap between technology and automotive needs, ensuring the seamless integration of

autonomous vehicle systems.

Data Sources and Hardware Interface

In order to train both our bounding box [1] and key points [4] ML models effectively, we required diverse data sources

containing images of various fuel cap positions. Our project's hardware interface revolved around the utilization of a

RGBD camera, which allowed us to not only capture visual data, but to also incorporate depth information allowing for

3D image recognition. This synergy of visual and spatial data enhanced the accuracy and robustness of our recognition

algorithms.

Stakeholders and Maintenance

The stakeholders of our software span a wide spectrum, including Stratom's technical team, automotive engineers, and

end users who stand to benefit from the convenience of automated vehicle refueling. Our team was responsible for the

initial development, but it was envisaged that Stratom's experts will take over in the software's maintenance and

continuous improvement, ensuring its seamless integration into their existing systems.

II. Functional Requirements

1. System shall take input from a RealSense 405 Camera

a. System shall be developed to accept input in the form of an RGB/depth image
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2. System shall output:

a. Annotated image of the fuel port displaying the position and orientation of the fuel cap

b. PoseStamped [6] ROS message, representing the position and orientation of the fuel cap

c. Confidence metric

d. Inference time for the detection methods, in ms

3. The system shall use one or two perception approaches

a. Perception approaches shall be ready to be modified and/or replaced by Stratom

III. Non-Functional Requirements

1. System shall be written in C++ or Python

2. System shall use current Stratom softwares to allow for easy integration with existing Stratom systems

a. System shall be a ROS node [8] written using ROS2 [7] Humble

b. The system shall be able to run in a Docker container based on a Stratom provided image

c. System shall make use of the realsense2_camera ROS2 [7] package

3. At least one of the perception approaches shall utilize a ML approach

a. Software shall not require an abundant amount of training

4. System shall aim to detect the fuel cap within reasonable operating ranges

a. System shall aim to detect the fuel cap within a 7 cm to 50 cm range

b. System shall aim to detect fuel cap within 30 degrees

5. (Stretch goal) System shall aim to run efficiently to support uninterrupted autonomous refueling, minimizing
downtime

a. System shall aim to perform inference in less than 500 ms

IV. Risks

Risk Likelihood Impact Risk mitigation plan

Damage to robotic
equipment

Unlikely Major Extensive virtual testing to ensure the software
is as intended before testing with hardware

Incorrect real world
image annotations
(human error)

Likely Moderate Develop robust data processing techniques to
handle annotation outliers. Implement data
validation and sanity checks to ensure accurate
fuel cap detection

4 | Page



Selected ML models
may not be able to
perform well

Likely Major Do preemptive research and test multiple
approaches; fail fast for approaches which do
not work

Lack of expertise in
computer vision

Likely Moderate Foster a culture of knowledge sharing and
continuous learning. Use Stratom as a main
point of contact for support.

Unrealistic Timeline Unlikely Minor Develop a detailed project timeline with
achievable milestones. Regularly reassess and
adjust timeline based on progress.

V. Definition of Done

Minimal Useful Feature Set:

The following key features must be successfully implemented and thoroughly tested:

1. Autonomous Fuel Cap Detection: One of the developed vision approaches shall accurately detect the position
and orientation of a fuel cap

2. Pose Stamp: shall produce a ROS2 [7] message containing the position and orientation of the fuel cap

Client Acceptance Testing:

Before acceptance, Stratom expects us to provide detailed documentation and testing information to ensure the
software meets their requirements:

1. Accuracy and Precision: A test plan that quantifies the accuracy of detection using each detection method shall
be created, executed, and reported. Stratom will validate the accuracy of the fuel cap detection and their
annotated images against a fuel cap in their office.

2. Documentation: Team shall provide system documentation including architecture, bring up instructions, and
dependencies.

3. Visit Stratom to perform a system demonstration of software.

Delivery Plan

System code will be provided to Stratom using Github and our documentation on how to get the software running in
Stratom’s environment. Final software in a docker container will be delivered by December 6th, 2023.

VI. System Architecture

Adapting a computer vision project encouraged the team to design several flowcharts on how to collect data to train a
ML model, train that ML model, and finally be able to recognize a fuel cap using a RGBD camera in real time. Figure 1
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illustrates the step-by-step procedure for detecting a fuel cap using image data, from data collection to result publication.

Figure 1: Fuel Cap Detection Process

Figure 1 (cont): Fuel Cap Detection Process

● At the beginning of the process, a camera is actively collecting data from its surroundings.

● The system logs a start time for calculating an inference time later

Wrapper of ML Approach

● Within this wrapper, the collected image data undergoes several steps:

○ Image Preprocessing: The incoming image data is prepared and normalized for analysis, enhancing its
quality and relevance.

○ Run the ML Algorithms: The ML models are executed on the preprocessed image.

○ Interpret the Model Output: The system interprets the output of the ML model, determining the location
and orientation of the fuel cap, relative to the camera.

● A 'PoseStamped' [6] ROS message is constructed, representing the position and orientation of the detected fuel
cap and the time at which the image was created.

● The system generates a confidence metric that assesses the reliability of the detection results.
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● The end time is recorded to calculate the inference time, measuring how long the entire process took.

● Verify that the fuel cap is in the image

○ If a fuel cap is detected, the system compiles the relevant information into a 'FuelCapDetectionInfo'
message, including the detected location and orientation.

○ In cases where no fuel cap is found, the system creates an 'Empty FuelCapDetectionInfo' message. This
message includes the inference time and a negative result flag to signify the absence of a fuel cap.

● The 'FuelCapDetectionInfo' message is published, making the results available for further processing or display.

Figure 2: Real-World Data Collection Process

Figure 2 describes the method used in gathering real-world data for
training the ML algorithm. It involves user-defined poses [5], camera data
acquisition, and structured data storage, ensuring that the collected
datasets are tied to their respective positions for effective ML model
training.

1. Wait for User to Input Pose Information

The system waits for user input regarding pose [5] information, which
defines the specific spatial characteristics or positions of objects to be
captured. This will be done using information collected from a data
collection rig to make sure the data is labeled stably and correctly.

2. Get Camera Data

Once the pose [5] information is provided, the system retrieves camera
data. This data includes images and possibly additional sensor
information, depending on the camera setup.

3. Save Raw Data Labeling the Position in the Filename

The collected raw data is saved, and the system applies a labeling
mechanism that embeds the positional information directly into the
filenames. This labeling ensures that each dataset is associated with its
corresponding pose [5].

4. Continue Running to Collect More Data?

● If further data is required, the process returns to step 1, where the
system awaits new pose [5] information.

● When all necessary data has been collected, the process concludes.

Figure 3 outlines a systematic approach to training a ML model, offering the flexibility to create new models or continue
improving existing ones. It covers key stages, including model compilation, data preparation, training, performance
evaluation, and model preservation for practical application.
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Figure 3: ML Model Training Process Figure 4: Virtual Data Collection Process

● The process begins by determining whether to create and train a new ML model from scratch or continue
training an existing one.

○ If a new model is to be trained, the system compiles a fresh ML model, specifying its architecture, layers,
and other configurations.

○ If an existing model is chosen for further training, that previously trained model is loaded into memory
to continue the training process seamlessly.
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● The system retrieves image data from the dataset, which serves as the foundation for model training.

● The raw image data undergoes preprocessing, which may involve operations like resizing, normalization, and
data augmentation to enhance model learning.

● The dataset is divided into distinct training and testing sets, allowing the model to learn patterns from training
data and evaluate its performance on testing data.

● The ML model is trained using the prepared training dataset. This involves iteratively adjusting model parameters
to minimize prediction errors.

● After training, the model's performance is evaluated on the testing dataset, providing valuable insights into its
accuracy and capabilities.

● Once the training is successful, the trained model is saved for future use or deployment.

Figure 4 outlines the team’s approach to gathering synthetic data for training a ML model using the Gazebo simulation
environment. It encompasses steps for creating random scenarios, capturing simulated images, calculating relative
positions, and saving the labeled data for subsequent model training.

1. Spawn camera such that it is aligned with Gazebo’s optical axis

A virtual camera object is dynamically placed in line with the simulation's coordinates. This will reduce the complexity
when reconstructing the fuel cap coordinates in the camera reference frame

2. Adjust Gazebo’s lighting and environmental parameters

We adjust the lighting conditions so that the model will work in a variety of conditions.

3. Spawn the fuel cap within the camera’s field of view

A virtual fuel cap object is instantiated in a location within the simulation so that the camera is pointing at it.

4. Take Simulated RGBD Picture

The virtual camera captures a simulated RGBD image of the scene, mimicking the data acquisition process in the real
world.

5. Calculate Relative Position

Based on the captured image and known camera properties, the system calculates the relative position and orientation
of the camera with respect to the fuel cap.

6. Save Data Labeling Position as Filename

The collected data, including the RGBD image and calculated relative position, is saved with a filename that reflects the
specific position within the virtual environment.

7. Continue Running to Collect More Data?

● If further data is required, the process returns to step 1 for new data collection.

● When all necessary simulated data has been collected, the process concludes.

Technical Design Issues:
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1. Problems with Setup:

● Challenge: Stratom required one of our computers to have the provided dockerfile running on an ubuntu
setup. This is necessary for the Docker container to access the USB ports and the RealSense camera drivers.
Our team had significant problems setting up the docker file on ubuntu machines.

● Solution: Communicating and troubleshooting with Stratom allowed us to solve the problem for one Ubuntu
machine.

● Unsolved: Setting up the docker on two machines. This is necessary for efficient data collection.

1. Problems with data collection:

● Challenge: Receiving accurate camera data is essential for training the machine learning model. Collecting
accurate data is a major challenge for the team. The data that must be collected includes a position in 3D
space and measurements to notate the pitch, yaw, and roll (rotations about the x, y, and z axes).

● Solution: Our team designed a method to accurately collect distance, pitch, yaw, and roll.

2. Problems with Gazebo:

● Challenge: Using the script to use the RealSense camera was not easily translatable to using a simulated
camera in Gazebo.

● Solution: Ditch Gazebo completely and focus on real world data. Simulated data would now be produced
using a different software- Unity.

VII. Software Test and Quality

- Unit Tests: Unit tests allowed our team to guarantee consistent performance across our codebase. These tests

detected and prevented potential bugs. Unit tests made it easier and safer to extend and modify the code

ensuring the longevity and adaptability of our product. The aspects of the project that required unit testing

include:

- Data Collection

- Coordinate Transforms

- Data Preprocessing

- Data Post Processing

- Linux Aliases: To enhance user experience our team implemented Linux aliases. These shortcuts simplify

complex Linux command sequences, enabling users to execute them with just a few key words.

- Code Reviews: The team performed code reviews at least once per sprint. The code reviews will be used to

ensure our code is well documented, readable and extensible for future users.

- Confidence interval: The team created a confidence interval by experimenting with a set of test images and

determining the average accuracy of those images. This interval provides users with an idea of how accurate our

model is in a given situation, defining its viability.
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- Integration Testing: The team tested the end-end behavior of data collection, ensuring that it can correctly take

in an image and appropriately store and label it. The team also performed integration testing with our machine

learning model, making sure the code can take in raw data and give a good pose [5] estimation for that data.

- Use Acceptance Testing: The team maintained their code on GitHub in a Docker Container. The team met with

Stratom biweekly for demonstrations on code testing as well as allowing Stratom to test the Docker container

themselves. Allowing the client to test the team’s scripts in the same working space allowed for valuable

feedback from the people who have the most domain expertise and hands-on experience in computer vision.

- Documentation for Code Clarity and Ease of Use: The code alone may not be self-explanatory. To address this,

the team provided in-depth documentation to explain the purpose, functionality, and usage of each ROS node

[8] within the codebase. The documentation was written in a clear and understandable manner making it

accessible to future developers. The aspects covered include:

- Explanations of the data collection process

- Descriptions of coordinate transformation methods

- Guidelines for data processing, including data formats

- Processing instructions, highlighting the generation of meaningful results/outputs

VIII. Project Ethical Considerations

Ethical considerations play a pivotal role in the development and implementation of any technological project. In
adherence to the principles outlined by the Association for Computing Machinery (ACM), this section delves into the
ethical considerations guiding the development of our fuel cap detection project, emphasizing transparency, fairness,
and responsible data usage.

ACM Principle: PUBLIC 1.06 - Fair and Honest Representation
Ensuring fairness and avoiding deception are fundamental ethical principles. In accordance with ACM’s Principle 1.06,
our team maintained transparency in all communications, particularly with stakeholders like Stratom and other users. We
committed to:

● Transparent Communication with Stratom: Open and honest communication with Stratom regarding any issues,
challenges, or limitations encountered during the project.

● Transparency about Strengths and Weaknesses: Providing clear insights into the strengths and weaknesses of the
developed software. This transparency extends to both Stratom and any other entities that may utilize our code.

ACM Principle: PRODUCT 3.10 - Quality Assurance through Testing and Review
Quality assurance is paramount in software development. ACM's Principle 3.10 underscores the need for adequate
testing, debugging, and review. In alignment with this principle, our project adhered to the following:

● Unit Testing: Rigorous unit testing is conducted for data collection, preprocessing, and output components,
ensuring their accuracy and reliability.

● Model Performance Testing: Thorough testing of model performance is undertaken, accompanied by the
provision of confidence intervals to gauge the reliability of the automated refueling system.
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ACM Principle: PRODUCT 3.13 - Responsible Data Usage
Ethical data usage is a cornerstone of responsible computing. ACM's Principle 3.13 highlights the importance of using
accurate data derived through ethical and lawful means. Our team was committed to:

● Data Collection Practices: Collecting our own data responsibly, ensuring that it adheres to ethical standards and
legal requirements.

● Pre-trained Model Usage: Acknowledging the use of a pre-trained model for certain aspects of the project,
coupled with a commitment to ethical considerations in its application.

ACM Principle: MANAGEMENT 5.09 - Fair Agreements on Ownership
Fair agreements on ownership are crucial for collaborative projects. ACM's Principle 5.09 emphasizes the need for fair
agreements concerning intellectual property. In line with this principle, our team committed to:

● Public Project Sharing: Hosting the project on GitHub as a public repository, fostering transparency and
collaboration.

● Fair Software License Agreement: Engaging in discussions with stakeholders, particularly Stratom, to establish a
fair and mutually agreeable software license for the project.

ACM Principle: SELF 8.03 - Documentation and Continuous Improvement
Self-improvement and documentation are integral aspects of ethical software engineering. ACM’s Principle 8.03
encourages software engineers to enhance their documentation skills. Our team adhered to this principle by:

● Functional Documentation: Providing comprehensive documentation for the project's functions, ensuring clarity
and understanding.

● Self-documenting Code: Employing coding practices that prioritize self-documentation, facilitating ease of
understanding for developers and stakeholders.

● Documentation of Common Issues: Creating documentation that addresses common issues, fostering a
supportive and informative development environment.

IX. Project Completion Status

Data Collection and Annotation (Real World) Figure 5: Annotated Image (Real World)

Our team executed a comprehensive real world data collection strategy to
amass a diverse dataset for fuel cap recognition. Using a custom Bash script,
we set our depth camera to capture 30 frames per second, while an operator
moved around the fuel cap, ensuring varied angles and backgrounds were
captured. This process yielded over a thousand images featuring the fuel cap
against different backgrounds and lighting conditions for a robust data sample.

Subsequently, we employed the open data annotation platform CVAT to
meticulously annotate approximately 900 images as some of the images were
too dark or blurry to use. These annotations included the marking of 10 key
points [4] on the front face of the fuel cap and drawing bounding boxes [1]
around the cap as shown in Figure 5 by the green points and pink box. The key
points [4] were strategically chosen to encapsulate the most critical features
defining the fuel cap, while the bounding box [1] outlined the rectangular
space framing the fuel cap tightly defining where the fuel cap is in the photo.
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Data Collection and Annotation (Simulated)

Our approach to collecting and annotating simulated data was streamlined and highly effective. Leveraging the Unity
platform, we crafted a three-dimensional environment replicating the fuel cap's movement and interactions within a
camera's perspective. This simulated environment provided controlled scenarios where the fuel cap underwent dynamic
rotations, lateral movements, and sporadic reappearances at varying distances from the camera. Each simulated
interaction was meticulously designed to ensure a comprehensive and diverse dataset.

Moreover, the annotations for the simulated data were
seamlessly integrated into this setup. The 3D model was
pre-annotated with key points [4] and bounding boxes [1] that
corresponded to the fuel cap's distinctive features as shown in
Figure 6 by the green points and blue box. Consequently, any
image captured within this simulated environment came
pre-annotated, allowing effortless extraction of the key points [4]
and bounding box [1] information from a corresponding JSON file.

This methodology streamlined the data generation process,
enabling the rapid acquisition of a vast array of annotated
images. By blending the precision of simulated environments with
predefined annotations, we obtained a high-quality dataset that
was pivotal in training our key points [4] ML model.

Figure 6: Annotated Image (Simulated)

Preprocessing
Preparing our dataset for the utilization of a pretrained Faster R-CNN [3] model demanded meticulous preprocessing of
our annotated real-world images. Custom Python scripts were developed to ensure data quality by filtering out images
that were missing key points [4] or bounding box [1] information, addressing human errors inherent in annotating so
many real-world images.

In contrast, the simulated image dataset required a distinct approach. Due to the inherent sharpness of the simulated
images, a Gaussian blur filter was applied. This transformation was vital to emulate the real-world scenario where images
captured by the depth camera tend to exhibit a certain level of blurriness.

For the key point model training, a series of image manipulations were executed. Initially, images were cropped to isolate
only the region encompassed by the bounding box [1]. Standardizing the dataset, the images were then resized
uniformly to a resolution of 256x256 pixels. Subsequently, target heat maps were generated, allocating a 10x64x64
structure where each channel represented one of the ten key points [4]. This data was converted into a tensor format
and normalized, rendering it compatible with PyTorch for further processing.

These preprocessing steps played a pivotal role in ensuring data consistency, optimizing the dataset to align with the
requirements of the respective models and facilitating the training process.

Bounding Box Model Training

We trained a high resolution Faster R-CNN [3] model with a MobileNetV3-Large FPN backbone to detect bounding boxes
[1] for the fuel cap. This model takes an input of a RGB image and for each object it detects it produces an estimate for
the bounding box [1] and object class. We initialized this model with weights pretrained on the COCO (Common OBjects
in Context) dataset [2], and replaced the object class predictor part of the model with our own class predictor that
predicts only whether the object is part of the background or the fuel cap. Bounding box [1] results from this model can
be used to focus onto a specific subsection of the image for key point estimation in future work as shown in Figure 8.
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The integration of Faster R-CNN [3] into our pipeline marked a significant stride towards achieving accurate and efficient
fuel cap recognition. However, since this model takes advantage of only the bounding boxes [1] in the images, and not
the image’s labeled key points [4], this model can only be immediately used for 3DOF fuel cap position detection.

Figure 7 shows the results of the first 10 epochs of model training. We used a learning rate scheduler which cuts the
learning rate in half every epoch, allowing for large gains in performance early on progressing into smaller gains for fine
tuning later on. Beyond 10 epochs, we found the model does not improve significantly, regardless of learning rate.

Figure 7: Loss metric of Faster RCNN model
over the first 10 epochs

Figure 8: Example bounding box [1] generated from Faster RCNN
model

Key Point Model Training

For precise 6-degree-of-freedom (6DOF) pose [5] estimation of the fuel cap, we developed a specialized key point model.
This model leverages a sophisticated two-layered hourglass architecture, inspired by the research paper, 6-DoF Object
Pose from Semantic key points, Pavlakos et al.

The implementation comprises two distinct stages:

1. Hourglass Architecture: This model configuration consists of two hourglass networks. The primary hourglass
network generates initial key point heat maps based on the input image, while the subsequent hourglass
network refines the output heatmaps, enhancing their accuracy and clarity.

2. Key point Generation: The final key point prediction is derived by extracting the pixel with the highest value from
each channel within the heatmap. These channels correspond to individual key points [4] of the fuel cap,
allowing us to precisely pinpoint the cap's spatial positioning in the image.

Coordinate Transformations
The output of our node [8]required us to find a transformation from the camera to the fuel cap. This transformation is
what was used to define the pose [5] of the camera, which we defined in a separate python module that we import into
our node [8]. Transformations are defined by calculating a simple transformation matrix, described in equation 1, where
H corresponds to the 4x4 transformation matrix, represents a 3x3 rotation matrix, and represents a 3x1 vector𝑅

3𝑥3
𝑡
3𝑥1

for the translation between the camera to the fuel cap. From this matrix, the orientation was derived from the rotation
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matrix, while the position is equal to the translation vector. Additionally, given a pose [5] we could build this matrix,
which was used for generating an annotated image.

𝐻 =
0
1𝑥3

𝑅
3𝑥3

1

𝑡
3𝑥1⎡

⎢
⎣

⎤
⎥
⎦

(1)

This transformation matrix is built when generating ground truth data, and will
be generated by our ML model. Our image annotations are built using this
translation matrix to calculate a 3D pose [5], and projected onto an image given
our camera’s intrinsics matrix. The image annotation is achieved by projecting a
coordinate axis from the perspective of the fuel cap onto the image using the
intrinsics and transformation matrix defined in the python module as shown in
Figure 9.

Figure 9: Example ground truth annotation from module

Implementation
Upon obtaining key point predictions from our trained model, we
harnessed this information to ascertain the position and orientation
of the fuel cap. To achieve this, we incorporated data from the depth
channel in conjunction with the camera's intrinsic parameters to
calculate precise 3D coordinates for each predicted key point. By
precisely calculating the centroid of eight key points [4] symmetrical
about the origin, we could effectively establish the position of the
fuel cap within the image. Employing a least squares approach, we
calculated the orientation of the fuel cap. This technique allowed us
to derive the optimal orientation parameters based on the available
information from the key points [4] and their spatial arrangement.
With the position and orientation, we could calculate the fuel cap’s
pose [5] and then generate a PoseStamped [6] message specifically
associated with the fuel cap as shown in Figure 10.

Figure 10: Final Pose Stamped [6] Message

X. Future Work

Our current fuel cap recognition system lays a solid foundation for automated refueling applications. However, there are
several avenues for future work and extensions that could enhance the capabilities and robustness of the system.
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Improved Key Point Selection:
Refining the selection of key points [4] on the fuel cap could enhance the model's understanding of crucial features such
as orientation. Exploring automated methods for key point identification or leveraging advanced techniques like facial
landmark detection may provide more accurate and comprehensive annotations.

Dynamic Environment Adaptation:
Extending the model's capabilities to adapt to dynamic environments, such as changes in lighting conditions, diverse
backgrounds, and weather scenarios, would be valuable. While we do have some variance in background environments,
investigating techniques for domain adaptation and real-time environmental analysis could contribute to increased
system resilience.

Continuous Model Training:
Implementing a continuous learning framework that allows the model to adapt and improve over time could also be
beneficial. This involves periodically retraining or continuously training the model with new data to account for changes
in fuel cap designs, vehicle models, or environmental conditions. This can be done using simulation software such as
Gazebo or Unity3D.

XI. Lessons Learned

Technical Proficiency and Continuous Learning:
The project provided an invaluable opportunity for team members, including those with limited prior experience in
machine learning and related technologies, to gain hands-on expertise. Delving into computer vision, ROS, and scripting
revealed the depth of technical knowledge required for successful project implementation.

Action Over Pure Research:
Emphasizing the importance of hands-on experience, the team recognized that practical application accelerates the
learning process. While research and forums offer valuable insights, actively engaging with tools like ROS2 [7] and
Gazebo through Docker containers proved to be a more effective and efficient method of mastering these complex
technologies.

Real-world Challenges in Industry:
The project simulated real-world industry experiences, where adapting to new software and methodologies took
precedence over extensive coding. Navigating the challenges of client-driven projects reinforced the idea that practical
problem-solving skills and adaptability are often more crucial than mastery of specific programming languages or tools.

Strategic Decision-Making in Computer Vision:
Working on a computer vision project highlighted the critical nature of decision-making in data preprocessing, model
selection, and training. The team learned to navigate the trade-offs between model complexity, dataset size, and training
time, gaining insights into the nuanced choices involved in developing effective computer vision solutions.
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Appendix A – Key Terms

Term Definition

[1] Bounding Box A rectangular enclosure around an object in an image. Defined by
its coordinates, width, and height, providing a visual
representation of the object's location and size within the image

[2] COCO Dataset A large image dataset widely used for object detection,
segmentation, and captioning tasks. Contains high-quality images
annotated with object instance segmentation, bounding boxes,
key points, and object categories

[3] Faster R-CNN A deep learning-based object detection model that uses a
region-based convolutional neural network (R-CNN) architecture,
allowing detection of objects within images by predicting
bounding boxes

[4] Key points Refers to specific identifiable points or regions within an image.
Often used as reference markers for object detection,
recognition, and pose estimation tasks

[5] Pose Refers to the position and orientation of an object relative to a
specific coordinate system

[6] PoseStamped Message Represents a data structure that combines information about the
pose of an object in a specific coordinate frame. Includes
timestamped position and orientation data

[7] ROS2 A software that provides tools and libraries for building robot
applications

[8] ROS Node A program that performs specific tasks within a system. Nodes
communicate with each other by publishing and subscribing to
messages on ROS topics
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