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I. Introduction
In 2019, UNICEF reported 2.4 million neonatal deaths and 2.0 million stillbirths. However, 75% of newborn

deaths, plus the majority of maternal deaths and stillbirth, can be prevented with high-quality care [1]. The current
methods of screening fetal and maternal health are inadequate and are not diagnosis tools. With an improved tool for
health screening, used before, during, and after labor, diagnosis will improve, and with that, infant and maternal
mortality rates will decrease.

Keeping Labor Safe (KLS) is a start-up medical technology company that is developing a technology called the
Fetal Reserve Index (FRI). This technology will allow medical professionals to monitor fetal health in real time, which will
be an improvement in Electronic Fetal Monitoring (EFM). This new approach, developed by Dr. Mark Evans M.D., will be
able to take in data from the monitoring device and quantitatively score the health of the fetus based on maternal, fetal,
and obstetrical risk factors in order to obtain a better picture of the health of a pregnancy than the current method of
screening [2].

In its initial state, the web application front end had been created and built to accept CSV files in place of EFM
monitoring. These CSV files contain data that an EFM would produce, such as fetal heart rate and uterine activity. Our
main goal for this project was to expand this EFM simulation flow. We set out to store the CSV data as it was not saved
previously, assign each case to the appropriate patient, visualize the data in a graph on both the “Monitoring” and
“Reports” tabs, add more roles for different levels of access, and allow the manual addition of fetal, maternal, and
obstetrical risk factors during data collection. With these additions to the existing application, the FRI will allow medical
professionals to improve the safety of labor and delivery across the globe.

II. Functional Requirements
1) Create an API that connects all relevant components of the application

a) Record the tracing
b) Compute the score
c) Generate and store reports

2) Add patient functionality and additional usability features
a) Add new patient through UI
b) Add patient history and risk factors
c) Associate report with patient

3) Add features and capabilities listed in “Application Requirements” below to the web app created by the CS Mines
fall 2022 and summer 2023 field sessions. This will turn the Fetal Reserve Index algorithm into an Intelligent
Cloud Platform and Bedside Web Application. Currently the application has 3 user types (Administration, Clinical,
and Decision Support) and will work on the current releases of the major web browsers.

Application Requirements:

● Refactoring the code to make it easy to internationalize the product.
● Dynamically update on-screen reporting as data is input.
● Standardized Reports
● Fluid Graph with Trendline
● Front End Improvements

○ Improve the design
○ Improve the Intuitiveness
○ Add reports

● Reset/Forgot Password capabilities
● Data input through intuitive UI

○ Live/Manual/Automated Input of EFM Data
○ Live/Manual/Automated Input of EHR/Risk Factor Data
○ Live/Manual/Automated Input of Notable Events
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● Drop Down Menu for Maternal, Obstetrical and Fetal Risk Factors
● UI automatically prompts for inputs at predetermined and variable intervals
● Dynamically update on-screen reporting as data is input
● Multiple Concurrent viewing capabilities: Real Time Sharing of Data
● Remote Administrative access for diagnostic support

III. Non-Functional Requirements
● The software and database must be HIPAA compliant to the best of our ability. This will have to be fully

completed and certified by a professional in that field.
● Must be built to allow for expansion.
● Must be compatible with all major web browsers such as Chrome, Firefox, Safari, and Edge on Windows.
● Back-end must be built in Python Flask.

IV. Risks
● Data Security

○ Mitigation Plan: We will try to secure the databases to the best of our ability, but KLS will have to hire a
consultant to certify that the program is HIPAA compliant.

● Test Data
○ Mitigation Plan: Since the amount of test data we have access to is very limited, we will have to work

within the bounds of the provided data and create our own program to simulate reading from an EFM.

V. Definition of Done
● Minimal useful feature set

○ API sends web requests at specified increments of time
○ Front-end displays new data from the EFM
○ Passes all unit tests

● Tests the client will run before accepting software
○ Connection to the EFM

● How the project will be delivered
○ Source Code (GitHub)
○ React App
○ Azure Repository
○ Environment Variables
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VI. System Architecture

Figure 1A - Logic Flow

Figure 1B - Architecture Diagram

Figures 1A and 1B depict the logic flow and architecture of the application. The user will interact with the
frontend web server, which is supplied with data from the backend web server. The backend of the application connects
to the SQL database through the Flask API. All of these components communicate with each other to ensure the best
possible user experience.
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Figure 2 - Database Schema

Figure 2 shows the architecture of the SQL database used to store the application data. The Patients,

PatientAddresses, PatientEmergencyContacts, and PatientInsurance tables are connected through the ID assigned to

each patient at creation. These three tables store related information for each patient, simplifying the main Patients

table. Additionally, this ID links the Patients table to any relevant entries in the Cases table. The Cases table is connected

to the CaseFrames and Reports table through a separate ID, the CaseID. The CaseFrames table stores each “frame” of

data collected on the monitor tab. The CaseID then links all of these frames together in the Cases and Reports tables. The

Users table stores all relevant information for a User, and is therefore not linked to any of the other tables.
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VII. Technical Design

Figure 3 - Connection Diagram

Figure 3 shows the processing flow for the csv upload on the live monitoring tab, as implemented by the
previous team. The old live monitoring system did not have any saving functionality and was not capable of receiving
updated risk factors mid-simulation. With this flow, it would not have been possible to implement these features, since
all of the csv data is processed between each increment of the timer, even though only a very small fraction is sent back.
To avoid this, the whole live monitoring flow was reworked by our team. The new flow diagram is depicted below.

Figure 4 - API Calls
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The figure above demonstrates the new logic flow for the live monitoring system. Now, after the frontend timer
has been started, a Case is created and saved to the SQL database. The caseId is then stored in the frontend. After that,
the backend starts reading the uploaded CSV at the start of the file. Instead of reading the entire CSV, the backend
processes only enough samples to create a single 10 minute CaseFrame. Once this CaseFrame data has been collected,
the data is processed and the CaseFrame is saved to the database with the corresponding caseId. Finally, the CaseFrame
data is sent to the frontend for display and the timer increments, causing the next frame to be read starting at the
position in the CSV where the last frame finished. This ensures that only the data that is needed is processed between
each timer increment, and previous data is not recalculated with any new risk factor data.

VIII. Software Test and Quality

Testing
User interface testing will be tested on different devices using various web browsers by all members of the team.

However, user acceptance testing will be difficult to implement during this phase of development. We are unable to
certify HIPAA compliance and unable to connect to a real EFM in order to test the transfer of data. We will work to make
sure that our implementation protects the data to the best of our ability and ensure that the testing program is as similar
to the EFM as possible.

Throughout the development process, in-depth testing was conducted on both the frontend and backend

applications. The findings indicate that, in nearly all instances, frontend pages load almost instantly, providing accurate

information. Notably, the FRI application demonstrates operational functionality on popular browsers such as Chrome,

Firefox, Edge, and Safari. The errors that were initially identified on the frontend application at the project's outset have

been successfully addressed and resolved. However, it is important to note that true usability tests could not be

performed due to the unavailability of an Electronic Fetal Monitor, preventing the transmission of real data to the web

application. Additionally, the application lacks HIPAA compliance, rendering it unsuitable for use in medical settings.

Despite these limitations, the overall performance testing results showcase the efficiency and effectiveness of the

application's frontend and backend components.

Table 2 - Testing

Test Purpose Test Description Environment, Setup,
and Tools

Acceptability
Threshold

Edge Cases

Application is
compatible with
major web browsers

The web app
functions as expected
when using the web
browsers specified by
the client

Google, Firefox, Edge,
and Safari

Pass/Fail Older versions of
browsers may be
unsupported

Dynamically update
on-screen reporting
as data is collected

The API will send web
requests every 20
seconds which should
update the reports
page with the newly
collected data

Platform UI, Azure
SQL Database,
Python Flask Test

Pass/Fail

Standardize reports The reports page Platform UI, Azure
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should display the
data contained in the
database to the
correct users

SQL Database

Role implementation Users can see only
the information they
should see as
specified by their role

Platform UI, Azure
SQL Database

Reset/forgot
password flow

Assure screen looks
appropriate on
desktop, tablet, and
mobile phone, and
password value
changes after flow is
complete.

Platform UI, Azure
SQL Database,
Python Flask Test

Text does not warp,
all components are
visible, and website
flow is smooth on all
devices, and
password value
changes after flow is
complete

Risk factor dropdown Assure screen looks
appropriate on
desktop, tablet, and
mobile phone,

Platform UI, Azure
SQL Database

Text does not warp,
all components are
visible, and website
flow is smooth on all
devices, only one risk
factor per category

API integration Azure SQL Database

Quality
For each change made by any member of the team or pair of members of the team, the changes have been

accompanied by an explanation of the changes, the problem they solve, and why the changes are necessary. The changes
were then approved by all members of the team who were not directly involved with the implementation of the
changes. This ensures code quality through code reviews. These code reviews keep in mind code metrics such as
readability, reliability, testability, clarity, efficiency, extensibility, and documentation in order to keep the code that we
will deliver up to the standards of Keeping Labor Safe.

In order to simulate the data received from the sensors of the EFM, a program will be created by another team
that will take the place of the upload of data in the format of a CSV file. This will connect to the API, which we will also
build and test. To make sure the application, the databases, the API, and the testing program all work well together, our
team used integration testing along with the individual testing of each component.

IX. Project Ethical Considerations
As software engineers, we must work to ensure that this application is of good quality and meets the

expectations of the client. Since sensitive medical data will be handled in the application, security is a main concern for
this project. As this application has been developed, we have tried to ensure to the best of our ability that patient data is
encrypted and stored securely. These are some ACM/IEEE principles that are pertinent to this project:

● 1.01 Accept full responsibility for their own work
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● 2.03 Use the client’s authorized property with the client's knowledge and consent.
● 2.06 Identify and report to the client or the employer if, in their opinion, a project is likely to raise issues.
● 3.08 Ensure that specifications for software on which they work have been well documented, satisfy the users’

requirements and have the appropriate approvals.
● 3.10 Ensure adequate testing, debugging, and review of software and related documents on which they work.
● 3.11 Ensure adequate documentation, including significant problems discovered and solutions adopted, for any

project on which they work.
● 3.12 Work to develop software and related documents that respect the privacy of those who will be affected by

that software.
● 3.14 Maintain the integrity of data, being sensitive to outdated or flawed occurrences

One of the requirements of this project, however, is for the Fetal Reserve Index to be HIPAA compliant. Our team
was unable to provide true HIPAA compliance, though we have tried to encrypt the data to the best of our ability. To that
end, these are some ACM/IEEE principles that were most in danger of being violated:

● 3.12 Work to develop software and related documents that respect the privacy of those who will be affected by
that software.

● 3.14 Maintain the integrity of data, being sensitive to outdated or flawed occurrences

Applying Michael Davis’s harm test and professional test to the project, the Fetal Reserve Index should pass both.
The application poses the threat of exposing sensitive medical data, but given that our team developed with good
practice and that HIPAA compliance will be certified by a professional, the data should be protected and the public,
patients, and medical professionals will not be compromised by the app. Additionally, the application’s purpose is to
provide more accurate readings of fetal health. The computations that will be used in the FRI have been tested by
medical professionals, and assuming sound implementation, the application should not cause harm to any of the
stakeholders. As for the professional test, so long as we have done our best to be transparent with our client and deliver
a well-developed and well-tested product, the Software Engineering code of ethics will have been followed.

If the software quality plan was not implemented properly, the health of the patients could be at risk. Improper
readings of fetal health could negatively impact fetuses, mothers, and even the medical professionals who make
decisions based on the readings. Additionally, sensitive medical data will be used in the app, and if we do not encrypt the
data and test data transfer properly, this data could be leaked, or at the very least, it could make it difficult for anyone
trying to certify HIPAA compliance.

X. Results
While most of the functional requirements that were given to us were completed, some were unable to be

completed. Specifically, HIPAA compliance was unable to be implemented since we lacked the time, skills, and should not
undertake the legal responsibility. The application will have to be sent to a HIPAA compliance specialist in order to
complete this requirement. Once this is done, the application can be connected to an EMR.

The app will also have to be able to be connected to an EFM and the CSV upload deprecated. This will require
access to an EFM for proper testing.

The last items to be completed are new user role verification, meaning that users will have to provide evidence
that they can legally view the requested data, e.g. ensuring that users who register as doctors are truly practicing doctors
in the state they register in. Additionally, we lacked the time to allow risk factors to be viewed and modified on the
patient records page.
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XI. Future Work
Currently, the application uses a CSV file upload to generate data reports for patients. When the application is

ready for production, the reports should be generated directly from the Electronic Fetal Monitor. Keeping Labor Safe 2

has been working on sending data to the application using bluetooth, but their EFM bluetooth data simulator has not

been integrated into the FRI. Eventually, that program will also be replaced by a true EFM which will require attaining an

actual EFM for testing. Additionally, all of the features listed below will need to be implemented before the FRI will be

ready for use in a medical setting.

● Create new user role verification

○ When creating a new account, the user will have to prove that they are a working professional within the

healthcare industry. We did not have the time or skills to be able to take on this task.

● Connection to an Electronic Fetal Monitor

○ We do not have access to an EFM, but previous teams have implemented testing by uploading CSV files

containing test data that mimics an EFM. However, the data is input all at once in a file upload, which is

not how data collection from the EFM will function. Keeping Labor Safe 2 has been working on creating a

program that will send data from a raspberry pi to the web application that will simulate EFM data until

such time that an EFM can be connected.

● HIPAA Compliance

○ HIPAA compliance will need to be certified by an expert or team of experts on HIPAA compliance. We are

unable to certify HIPAA compliance due to time, skills, and legal responsibility.

● Connection to Electronic Medical Records

○ Connection to an EMR will require HIPAA compliance.

● Allow risk factors to be added on patient records page

XII. Lessons Learned
It is very difficult to add new features when existing documentation is lacking. Our team initially struggled to

understand how the system currently functioned, because the previous groups had not created much documentation.

The team encountered errors when trying to run the existing code, which had not been documented. It would have been

very helpful if the previous teams had documented these issues. Information from previous groups also seemed to be

conflicting. Our team had to spend a great deal of time trying to work out how the backend and frontend actually

functioned.

We also learned that your client contact may not have a technical understanding of the project. Our team

struggled to get access to the correct resources for a long period of time at the start of the project, mainly because our

client contact did not fully understand what we needed to get started on the project. Our team realized over time that

we needed to be very specific with our client contact and explain everything, instead of assuming that the client contact

would understand.

Trying to avoid temporary fixes that will be changed is another lesson learned. A few times, our team quickly

implemented solutions to show to our client that we knew we would have to change in the future. However, later down

the road this made it more difficult to implement new features. Unless it is absolutely necessary, it is better to spend the

time creating the right solution instead of a quick one that works for the time being. This also makes it much easier for

other teams in the future.

Lastly, maintaining consistency throughout your codebase is extremely important. The previous teams that had

worked on our project did not follow this rule. Communication between the backend and frontend was not done through

a standard method in all places. This made it difficult to create new data types and methods for transferring information.

11 | Page



XIII. Acknowledgments
We would like to thank Dr. Christopher Painter-Wakefield for his help as our advisor on this project. Without his

help, we would not have been able to accomplish the completion of our project. We would also like to extend our
gratitude to the Keeping Labor Safe 2 and Keeping Labor Safe 3 teams for their collaboration.

XIV. Team Profile
Zane Beasecker

Class: Senior

Major: Computer Science + Robotics and Intelligent Systems

Hometown: Piedmont, OK

Work Experience: Development Intern at Lopez/Dorada, Mines CSCI TA

Hobbies:Music Production, Anime, Piano

Rachel Jones

Class: Senior

Major: Computer Science + Robotics and Intelligent Systems

Hometown: Thornton, CO

Work Experience: Application Development Intern at U.S. Engineering

Hobbies: Ballroom dance, learning languages

Delia McKee-Gresham

Class: Senior

Major: Computer Science + Robotics and Intelligent Systems

Hometown: Boulder,CO

Work Experience: Software Engineering Intern at NCAR

Hobbies: Gaming, fencing

Mark Vosseteig

Class: Senior

Major: Computer Science + Space

Minor: Aerospace Engineering

Hometown: Fort Collins, CO

Work Experience: Lockheed Martin Intern, CS Research Assistant

Hobbies: Piano, gaming, snowboarding

12 | Page



References
[1]“New UN report highlights child mortality rates for the Pacific,” www.who.int.

https://www.who.int/westernpacific/about/how-we-work/pacific-support/news/detail/23-10-2017-new-un-report-h
ighlights-child-mortality-rates-for-the-pacific

[2] Mark I. Evans, MD; David W. Britt, PhD; Shara M. Evans, MSc, MPH; Lawrence D. Devoe, MD, “Improving the
interpretation of electronic fetal monitoring: the fetal reserve index,” American Journal of Obstetrics and Gynecology,
vol. 228, no. 5, May. 2023. Accessed: Dec. 4, 2023. doi:https://doi.org/10.1016/j.ajog.2022.11.1275. [Online].
Available: https://www.ajog.org/article/S0002-9378(22)02163-9/fulltext

Appendix A – Key Terms
Include descriptions of technical terms, abbreviations and acronyms

Term Definition

KLS Keeping Labor Safe - A medical technology startup company and our
client.

FRI Fetal Reserve Index

EFM Electronic Fetal Monitor - A medical device used to monitor the fetal
heartbeat and uterine activity.

EMR Electronic Medical Records - Medical records that are stored digitally.

HIPAA Health Insurance Portability and Accountability Act

UI User Interface - the means by which the user and a computer system
interact, in particular the use of input devices and software
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