
The LLM-Based Mini-Lecture
Generation for Enhanced Learning

Project

HiLabs Inc. 1

Gabrielle Christensen
Grace Corpron
Jessica Engel
Peter Hoila

December 10, 2023

CSCI 370 Fall 2023

Prof. Bodeau

Table 1: Revision History

Revision Date Comments

1 Sep 1, 2023 Completed Sections:
I. Introduction
II. Functional Requirements
III. Non-functional Requirements
IV. Risks
V. Definition of Done

XIII. Team Profile

Updated Sections:
References
Appendix A: Key Terms

2 Sep 17, 2023 Completed Sections:
VI. System Architecture

3 Oct 22, 2023 Completed Sections:
VII. Software Test and Quality
VIII. Ethical Considerations

Updated Sections:
VI. System Architecture
References

4 Nov 12, 2023 Completed Sections:
XII. Acknowledgments
IX. Project Completion Status
X. Future Work
XI. Lessons Learned

Updated Sections:
VI. System Architecture
VII. Software Test and Quality
Appendix A: Key Terms

5 Dec 4, 2023 Completed Sections:
XI. Technical Design

Updated all previous sections

Table of Contents
I. Introduction.. 4
II. Functional requirements..4
III. Non-functional requirements... 5
IV. Risks...5
V. Definition of done..6
VI. System Architecture...7
VII. Technical Design.. 7
VIII. Software Test and Quality...9
IX. Ethical Considerations... 11
X. Results...13
XI. Future Work... 14
XII. Lessons Learned... 15
XIII. Acknowledgements...16
XIV. Team Profile.. 17
References..17
Appendix A..18

I. Introduction
HiLabs Inc. is a tech startup dedicated to providing AI tools for educational professionals

and students alike. In alignment with this mission, Hi Labs Inc. has proposed the
Large-Language-Model-Based Mini-Lecture Generation Project, abbreviated as the LLM-LGP
(Large Language Model Lecture Generation Project).

With the recent rise in publicly available generative AI, students have taken advantage of
AI tools to enhance their learning. One might prompt a generative AI model to explain a subject
to them as if they were a novice or young child or asking for assistance on the answer to a
practice exam given for a class. Currently, there is no guarantee that the AI model will return
accurate or reliable information. Receiving the desired level of complexity within an explanation
additionally requires an understanding of prompt engineering techniques on the user end; those
who are less skilled in prompt engineering may get disproportionately lower quality results from
generative AI tools. Large Language Models (LLM) are incapable of distributing results in
creative formats that are not simply blocks of text. This project addressed all of the above issues;
using enhanced prompt engineering and fine-tuning to ensure that students can receive accurate
information, and customized explanations without the extra step of prompting an AI.

The LLM-LGP allows students to easily generate a lecture on a given subject customized
to their own learning needs. A user will be prompted to input specifications for a lecture, and
from those specifications, a slide deck will be generated that teaches the users the basics of a
desired topic. The project was tested on open-source educational content and utilized an
open-source LLM. Upon completion of the project, HiLabs will be responsible for the continued
maintenance of the software.

This project is a separate version of an existing lecture generation project by Hi Labs, in
which an OpenAI LLM model and professor-uploaded content were used. The initial project
proved to be successful, with approximately 120 users at the peak of its popularity. However, the
cost of an OpenAI key made the service expensive to run for the company. The LLM-LGP
primarily differs in its use of an open-source LLM, which requires learning how best to interface
with said LLM: an undertaking that HiLabs has designated to us. These adjustments will greatly
reduce the cost of running the service for HiLabs and allow the product to be accessible to all
students for free.

II. Functional requirements
The primary components of this project include the LLM summarization based on

uploaded lecture material, implementing API wrappers, and user specification for desired output.
To allow for easy user customization and an interface to upload materials, the product requires a
functional front-end interface.
Specific functionality includes

● Utilization of an LLM to output a modified, easily digestible lecture
● Ability to take user specifications and convert them into a prompt

● Prompt engineering that can produce a reliable output that is ingestible by a Python
library to make slides

● Capability to upload PDF files
● Capability to parse uploaded PDF files to feed into the LLM
● Functions wrapped in an API that can be called using JavaScript and/or TypeScript

III. Non-functional requirements
In addition to the main functionality of the product, we must consider constraints

regarding computing power, cost of technologies, and copyright of educational materials.
Non-functional requirements include:

● LLM must be pre-trained, open-source, and able to be run locally on a personal machine
or through an API

● Educational content for testing and model training must be open-source
● LLM context must be limited to reduce computing power
● The generated lecture must be output into a .pptx or pdf

IV. Risks
Before beginning development, several technical risks and skill risks were identified in

order to develop plans to combat them throughout the duration of the project. Technical risks are
risks we encountered with the software we use (as our project doesn’t have any hardware
specifications). These can be reduced by implementing clean coding practices, along with
comprehensive code reviews and extensive testing. Skill risks are risks we encountered in
learning new languages or how to use new technologies. Incorrect understanding of these skills
throughout our learning could have impacted the development and functionality of our project.
All skill risks listed below were mitigated by keeping open communication between each other.

Table 2: Risks

Identified Risk Likelihood Impact Risk Mitigation Plan

Technical risks

We may experience difficulties in
calling and tuning the LLM model

Very
Likely

Major We experimented with different local
LLMs as well as with the OpenAI
models

The model may generate false or
inaccurate information

Likely Moderate We researched prompt engineering or
limit the scope of the LLM prompts

We may encounter issues
integrating our code to be callable
from typescript/javascript.

Unlikely Minor We tried different methods of
integration (Ajax request, child
process, fetching)

Skill risks

No team member has experience in
tuning an LLM

Certain Major We researched and tried different LLM
models with the help of our client

No team member has experience in
developing an API

Certain Minor We researched Python API creation
tools such as flask

No team member has experience in
prompt engineering

Certain Moderate We researched prompt engineering
techniques and try them on different
configurations of LLMs

Some team members have
integrated languages before, but
never JavaScript with Python

Certain Minor We tried different methods of
integration (Ajax request, child
process, fetching)

Operational risks

The user does not supply the LLM
with enough material to generate a
lecture

Likely Moderate We are unable to mitigate this risk at
this time.

V. Definition of done
Our minimum viable product (MVP) is a functional end-to-end product to provide proof

of concept for the LLM-LGP. The MVP features a mock user interface that may be swapped with
HiLabs’ own interface. It includes an API that takes in various lecture materials and, if desired
by the user, specifications as to how the output should be written and formatted. It then outputs a
modified, easily digestible lecture using a custom-trained LLM. This API can be called from
JavaScript in order to integrate with HiLabs’ front end. The integration with their current
codebase has not been tested as we don’t have access to their current GitHub repository. The
product was delivered by giving our client access to our team’s GitHub repository. This includes
the API code as well as the configuration of the chosen LLM, but not the LLM itself.

VI. System Architecture
Figure 1: System architecture draft

Figure 1 demonstrates the system architecture for the LLM-LGP. The user query, entered
by the student, contains both the prompt specifications provided by the user, and the lecture
material uploaded by the user. The prompt specifications are provided as selectable options to
ensure the prompt language is accurate every time.

Both of the aspects from the user query are fed into a prompt. The LLM is fine-tuned to
answer the specific prompt format with the user specifications, ensuring the results are always
reputable. The LLM then learns specific language and vocabulary on the user’s topic through a
dataset of open-source educational content. From this, the LLM outputs a PowerPoint outline as
a general text file.

The generated outline is then parsed through a set of functions using Python’s
python-pptx library, in which Python looks for specific keywords/formatting within the text to
create titles, text boxes, and slide breaks. Once a PowerPoint is generated from the outline, the
user is then prompted to download the presentation as either a .pptx or .pdf.

VII. Technical Design
This project requires reading large amounts of uploaded data and ensuring that data is

readable by an LLM. To achieve this, we utilized Chroma DB: a vector database. Instead of
passing the text content of entire documents as context to an LLM, we can find just the most
relevant text chunks. This is done by splitting each document into text chunks and then
embedding each chunk as a vector based on the contents of the text chunk. This step needs to be
done only once for each upload and the vector database is used for all future queries. The queries
are also transformed into a vector and compared against the vector database to find the most
similar vectors. These vectors are then mapped back to their original text chunks and passed as
context to the LLM. The text chunks also retain metadata including the file and page number,
which allows us to create citations for our slides.

Figure 2: Vector database architecture

Parsing through uploaded files is one of the key functionalities within our project. PDF
files are not always guaranteed to be clean. Reading plain text from a PDF is a simple task, but
content such as images or equations is not as easily read. The parse_docs function, as shown in
Figure 2, was able to utilize both PyPDFLoader for loading readable PDF files and an
unstructured document loader to handle abnormal formatting within the uploaded files. If the
page content was empty from the first path utilizing the PyPDFLoader, Unstructured.io’s
document loader API was called instead. It should be noted that this functionality is still being
explored since files that are partially readable won’t trigger the use of the unstructured document
loader. Ideally, the unstructured document loader would be used on every file, however, this
would come with high computing costs due to the image recognition techniques used.

Figure 3: Document parsing function

We lastly had to implement highly robust prompt engineering techniques to ensure a
reliable output from the LLM every time. LLMs often include conversational lines such as “Sure,
here is a presentation on your topic.” Having this output within the generated slides would
decrease the quality of the presentation. The prompt in Figure 3 was effectively able to generate
an output without conversational lines by explicitly prohibiting extraneous phrases or
non-delimited lines.

Figure 3: Prompt template

Strictly following these delimiters is imperative to successfully run our PowerPoint conversion
script. However, we recognized that this prompt may not be entirely failsafe. Therefore, in the
PowerPoint generation module, we used regex patterns to further account for LLM consistency
and filtered some common conversational words.

Figure 4: PPTX generation

VIII. Software Test and Quality
In order to ensure that the software works as expected, a testing plan is implemented for

each of the functional requirements for the minimum viable product. All unit tests described
below are implemented using the pytest Python library [1].

Use of an LLM to output a modified, easily digestible lecture
To test this requirement, we verified that the LLM-generated lecture is “easily

digestible”. The definition of “easily digestible” is variable, and the content of the LLM’s
response is non-deterministic (the output is different every time). Therefore, direct testing of
these aspects is not feasible. However, we are able to test the specific word count of each bullet
point in a generated lecture. It defeats the purpose of a PowerPoint output format if reading each
bullet point is like reading a block of text. Our team has determined that a word count of 20 is an
appropriate maximum for each bullet point. We split the string of each bullet point by space and

counted each word within the split array. The results of this test should confirm that no splits
exceed a length of 20. We were unable to implement automated testing for this over the duration
of this project, but manual testing does confirm that the output lectures have been easily
digestible under these standards.

Capability to upload lectures, homework, and other class material as input
The LLM-LGP cannot function if the user uploads an incorrect file type. Currently, the

software only accepts PDF files; the PDF parser will not work if it is not given a PDF. From our
mock user interface, we tested that the user has a correct filename input format, the file they
uploaded exists, and there weren’t any errors uploading the file. This test’s purpose is to identify
edge cases where the input file is not a PDF file type or the file is null. The result of this test was
that we were able to successfully move forwards when the correct file was uploaded, but when
an incorrect file was uploaded, the program would not move forwards and the user was prompted
to upload a file of the correct format instead. This was additionally verified with pytests that
simulated API calls containing a valid and an invalid document type.

Ability to take user specifications and convert them into a prompt
User specifications must be failsafe. While we expect HiLabs to replace our makeshift

front end with their own front end upon completion of the project, we nevertheless want to
ensure that faulty user input does not interfere with the rest of the project. Having our own mock
UI allows for more efficient API testing. We implemented unit tests using pytest in order to
ensure user specifications were correctly processed and converted. If a user does not fill out all
requested fields for difficulty level, specific topic, etc, the program should not continue until they
have done so in order to prevent holes in the prompt. An edge case of this testing is that a user
requests a specific topic for the lecture to focus on, but their request does not pertain to the
content of the pdf (e.g. a user enters “wildflowers” when the uploaded lecture material pertains
to parts of the brain). In this instance, we implemented testing for whether the lecture material
actually contains the subtopic. If the parsed PDF does not contain any instances of any part of the
specific string the user is requesting, it should throw an error message to the user and not
continue. This test should still pass in cases where the user enters a similar string, such as an
input of “vaccines” when the lecture only contains the singular “vaccine”.

Functions wrapped in an API that can be called using JavaScript and/or TypeScript
We tested that all JSON data passed to the API is posted with no errors. This required us

to test that all calls made to the API at each stage of the lecture generation process resulted in
success, and if not, a message was returned specifying why an error occurred. This is made easy
by the fact the flask API implements codes to categorize responses. The results of this test should
be that all 3-digit API response codes are an int () such that . These results𝑖 100 ≤ 𝑖 ≤ 200

were confirmed in our testing when we successfully confirmed that the API could be called, and
returned the correct response code for the information passed to it.

Prompt engineering to produce a reliable output that can be ingested by a Python library
to generate slides

We tested this by ensuring that every line of the output matched the expected format. The
purpose of testing this is to ensure that the parser can create a PowerPoint from the outline. There
is little room for error since the parser might break if it receives input that is in the wrong format.
We did this by uploading a mock outline and ensuring that the output title and slides had the text
and format we expected. Because of the nature of this test, we were unable to implement
automated testing. However, through qualitative examination, we were able to confirm that the
prompts generated can reliably produce the expected output.

Capability to parse said material to feed into the LLM
We tested this capability by creating mock educational materials, such as PDFs with filler

content. We ensured that all text from the material is read and processed by checking that all text
appears in the parser. The purpose of this test is to ensure the program can correctly interpret the
material that the student inputs. Edge cases include corrupted PDF files where text is overlapped,
hidden, or displayed in a non-sequential format. Such situations are difficult to handle with the
parser, therefore, the acceptability threshold is low for these tests.

IX. Ethical Considerations
The ultimate goal of the LLM-LGP is to improve the lives of students. Despite our intent,

there is still a possibility of violating ethics when implementing this project such as protecting
the intellectual property of the company HiLabs, providing accurate information, and giving
students information about how the model was trained. Recognizing these problems is pivotal to
creating a platform that students and instructors feel comfortable and confident using. The ACM
Code of Ethics and Professional Conduct is an ethical framework that outlines principles that all
software engineers should adhere to, and will be referenced in these ethical considerations [2].

One of our most critical considerations is protecting the intellectual property of
professors. Many professors do not want their course content to be shared outside of the
classroom. Faculty-generated property, like much intellectual property, is subject to copyright
laws, whether ownership falls under a faculty member themselves, a publisher, or the university.
This fact begs the question, how does AI mitigate copyright infringement? Authors Sarah
Silverman, Christopher Golden, and Richard Kadrey filed suit against OpenAI in July for this
very issue [3]. They allege that OpenAI’s ChatGPT and Meta’s LLaMA train their models on
illegally obtained works through piracy sites like Library Genesis, Bibliotik, and Z-library. The
plaintiffs claim that they did not consent to the use of their copyrighted books as training
material. This case is still ongoing, but it nevertheless shows that the definition of copyright

becomes blurred in the context of AI. We are in danger of violating ACM Principle 1.5: Respect
the work required to produce new ideas, inventions, creative works, and computing artifacts…
respect copyrights, patents, trade secrets, license agreements, and other methods of protecting
authors' works,” [2].

Even if an AI were to correctly obtain its sources, what are the chances it is able to
accurately cite a source? AI systems are notorious for hallucinating sources when prompted to
cite; it will claim something is true, and cite a source, but there is no guarantee that a piece of
information actually came from a source, or if the URL it sources is real. This additionally
pertains to ACM Principle 1.5: Respect the work required to produce new ideas [2]. Citing
sources is an academic standard not only for students to show they conducted proper research,
but also to give credit to and acknowledge other researchers’ ideas.

In the context of the LLM-LGP, we cannot control how the AI model we use is trained.
Not every AI company is transparent about the datasets used to train their models; if every AI
company used the same public dataset, there may be less competition among them. Therefore,
mitigating the copyright issues associated with our chosen LLM’s training was out of scope.
However, we took action to ensure the LLM correctly cited and to ensure any piece of
intellectual property is kept private once it is handed over to the LLM-LGP. This is only possible
with an offline LLM model since online models such as ChatGPT learn from user input. Many
companies have banned their employees from uploading private documents to ChatGPT.

Students should only be able to see their own prompts and uploaded material so that a
professor’s lecture material is not shared with everyone using the LLM-LGP. This required us to
uphold ACM Principle 1.6: Respect privacy [2]. It required us to design the system such that it
upholds ACM Principle 2.9: Design and implement systems that are robustly and usably secure
[2]. For citations, we implemented strong prompt engineering to explicitly tell the LLM that it
may not use sources outside of what the student has uploaded. Accurate information is still not
an absolute guarantee, even with the most sophisticated prompt engineering, we recommend that
HiLabs implements a disclaimer in their own final user interface to inform users of the potential
for the LLM to generate false information, and that fact-checking is crucial when using the
software. Including this disclaimer allowed us to uphold ACM Principle 1.3: Be honest and
trustworthy [2]. Specifically, where 1.3 states, “A computing professional should be transparent
and provide full disclosure of all pertinent system capabilities, limitations, and potential
problems to the appropriate parties,” [2].

There may be cases where a student claims an LLM-LGP-generated slide deck as their
own intellectual property. This, by proxy, violates the section of ACM Principle 1.3 that states
“making deliberately false or misleading claims… [violates] the code,” [2]. While we were
unable to implement this into our final product, we recommend that a watermark be included at
the bottom of each slide that states the deck was AI-generated using the LLM-LGP tool. It is out
of our control whether a user chooses to remove this watermark, but we will have nevertheless
done our due diligence to be transparent about the origins of the slide deck.

Generated lectures must be accessible to all, such as those with dyslexia, color blindness,
and impaired vision. This is to be in accordance with ACM Principle 1.4: Be fair and take action
not to discriminate [2]. To do this, we ensured the slides use a large font that is friendly to those
with dyslexia, and ensured text and images are colored in a way that has high contrast. The text
is additionally screen-readable for those utilizing screen-readers.

The Michael Davis framework is an ethical decision-making framework that assists in
guiding individuals to make ethical decisions [4]. By applying the Michael Davis tests to the
LLM-LGP, we can uncover more ethical risks associated with the project, and create plans to
mitigate them. The primary issue at stake is that students need a way to effectively summarize
course material. Stakeholders include students, professors, and other educational professionals.
The choice we made is to develop the LLM-LGP in order to address this issue.

● Harm test: Does this option do less harm than any alternative?
We have the potential to hurt students' ability to learn through over-reliance on the

LLM-LGP. Critical thinking and synthesis are critical skills in academia, and those skills may
suffer for those who rely on this software. In order to mitigate this, we encourage students to
engage with the generated summary, validate the information within it, and use it to determine
strong and weak points within their own learning. There is a balance between technology as a
tool and the development of essential learning skills.

● Professional test: What might my profession's ethics committee say about this option?
From the perspective of the teaching profession, some professors will be more resistant to

AI tools than others. At Colorado School of Mines and many other universities, there are specific
guidelines outlined by the institution for the use of generative AI [5]. Education professionals
understand that the use of GenAI amongst students is inevitable. Tools such as the LLM-LGP are
not going away, and it is up to each institution to decide what policies and guidelines will be put
in place.

X. Results
The project completion status is with respect to the functional and non-functional

requirements outlined in sections II and III, and the initial project description given by HiLabs,
which is as follows:

● Utilizing LLMs to interpret and analyze educational content, extracting key themes,
concepts, and insights

● Developing algorithms that can structure these insights into concise, informative
minilectures, tailored to different learning styles and levels

● Integrating NLP techniques to ensure the generated content is coherent, engaging, and
pedagogically sound

● Creating an API or interface to enable seamless integration of this system into our
existing platform, allowing educators to easily customize and deploy mini-lectures

Features implemented
● The pre-trained, open-source, locally-run Ollama LLM is utilized to produce an easily

digestible lecture.
● User specifications are retrieved from the API in order to generate a prompt based on a

premade template. The user specifications allow for adjustment to current knowledge
level, desired complexity, and whether the lecture should provide more information or
elaboration on a specific topic. The premade template instructs the LLM to use slide,
title, and bullet-point delimiters that are easily ingested by the python-pptx library.

● Only PDF files can be uploaded by the user.
● All functions are wrapped in an API that, as validated through testing, can be called using

JavaScript and TypeScript.
● Vector stores were implemented through LangChain in order to limit LLM context and

improve performance.
● Testing was performed using open-source educational content, such as through

LibreTexts and MIT OpenCourseWare.
● The generated lecture can be downloaded by the user as a .pptx.
● A functional front-end interface, but not web-deployable nor visually sophisticated.

Features not implemented
● The user cannot interface directly with the LLM at this time. This was a primary goal and

is not difficult to implement on its own (simply pass the user-generated prompt instead of
the premade one). However, the user breaking the program (e.g. instructing the LLM to
use different delimiters for the slides) was a greater concern that we could not mitigate.

● Different files such as .docx, .doc, or .pptx cannot be uploaded. Each of these file types
can be easily converted to a .pdf, so we do not expect this to be an immediate issue.

● While functional with JavaScript and TypeScript, the API has not been tested for
integration with HiLabs’ system. As outlined in section V, we did not receive access to
the existing codebase over the duration of this project.

● Natural Language Processing was not used to test whether each lecture was
pedagogically sound.

Based on our ability to implement most of the key functionality of this project, our team
feels we were effectively able to meet the minimum viable product requirements.

XI. Future Work
Despite the MVP requirements being met, there are still more aspects that can be

improved upon or added to the LLM-LGP. Our project contains an extensive readme for any
future developers to be able to continue working, and Images are an important aspect of
captivating and informative slideshows. While our product produced a slideshow with valid and

comprehensive text, adding relevant images was beyond the scope of our timeframe. In the
future, we recommend that images be incorporated into the PowerPoints that the user receives.
One possible approach to this requires an AI that is able to interpret the preexisting images that
are in the material (such as textbooks) that the user uploads, and cut and paste these images into
relevant spots in the slideshow. This would require an AI with image interpretation capabilities,
the ability to implement this into the code base, and the ability to insert an image into the
generated presentation and adjust the size without any corruption. We estimate the duration of
this project would be one month, and would require access to an LLM with image processing
capabilities, as well as the computational power to run this LLM. Despite the time and
computational costs, this would result in a significant change in the quality of the slide deck that
the LLM-LGP produces.

An additional recommendation pertains to enhancing LLM processing time by improving
upon its infrastructure. In keeping with the ethical considerations of this project, we have
implemented citation generation within the slides. This has driven the generation time to 2-3
minutes per slide. This can be greatly improved upon through a project with a higher focus on
making improvements to the system architecture. Required knowledge and skills may include an
understanding of machine learning, parallel processing techniques, and LLM architecture. We
estimate that this could be a 3-month project.

We recommend that additional document loaders be explored in the future. Currently, the
LLM-LGP is only able to parse PDF materials, which primarily restricts the user to online
textbook content and slideshows. Opening the project to allow for YouTube transcripts (if a
professor uploaded a video of a lecture) or HTML files (where content is on websites such as
OpenStax or LibreText) could broaden the possibilities for educational content users can select
from. We estimate that this could be a 2-month project.

XII. Lessons Learned
The struggles our team faced throughout the development of the LLM-LGP provided

each of us with valuable software engineering skills and experience. We learned a few key
lessons in working together this semester.

We have learned it is absolutely critical to document continuously throughout a project.
Not only does this allow for a reduction in stress at the end of the project, but it helps ensure all
collaborators have the resources to understand the entire project. If team members are left in the
dark during the development of individual elements, integration of those elements becomes
much more challenging.

Test Driven Development is more effective than testing after all individual parts are
completed, and results in higher-quality code. This includes testing all of the components
together as you create them. Creating them and then attempting to put them together results in
unclean and often broken code. Testing everything together from the beginning takes less time
than troubleshooting at the very end.

XIII. Acknowledgements
We would like to extend special thanks to our client Loc Hoang for his valuable technical

advice throughout the duration of this project. The suggestions you provided for the blocks we
faced allowed the project to run smoothly. Your flexibility and patience were immensely
appreciated. Each one of us has benefited from your insight, and we sincerely hope our work on
this project has in turn benefited HiLabs’ mission.

We would additionally like to thank our faculty advisor Donna Bodeau for her guidance.
This project would not be what it is today without your attention to detail and design expertise.
With your help, we have all walked out of this class not only better programmers, but more
competent and well-rounded engineers.

XIV. Team Profile

Gabrielle Christensen
Senior
Computer Science
Highlands Ranch, CO

Peter Hoila
Senior
Computer Science
Lakewood, CO

Grace Corpron
Senior
Computer Science
Focus in Robotics and Intelligent Systems

Portland, OR

Jessica Engel
Senior
Computer Science
San Antonio, Texas

References
[1] “pytest: helps you write better programs,” pytest, https://docs.pytest.org/en/7.4.x/

(accessed Oct. 22, 2023).

[2] “ACM Code of Ethics and Professional Conduct,” Association for Computing Machinery,
https://www.acm.org/code-of-ethics (accessed Oct. 22, 2023).

[3] W. Davis, “Sarah Silverman is suing openai and meta for copyright infringement,” The
Verge,
https://www.theverge.com/2023/7/9/23788741/sarah-silverman-openai-meta-chatgpt-llam
a-copyright-infringement-chatbots-artificial-intelligence-ai (accessed Oct. 22, 2023).

[4] M. Davis, “Seven Step Method for Ethical Decision-Making,” Online Ethics Center for
Engineering and Science,
https://onlineethics.org/cases/seven-step-method-ethical-decision-making (accessed Oct.
22, 2023).

[5] “Guidelines for using Generative Artificial Intelligence at mines,” Colorado School of
Mines, https://www.mines.edu/academic-affairs/genai/ (accessed Oct. 22, 2023).

Appendix A
Table 1: Key terms

Term Definition

Application Programming Interface (API) A software interface that allows two or more
computer programs to communicate with each
other.

Large Language Model (LLM) An AI system capable of understanding and
generating human-like text.

Natural Language Processing (NLP) A branch of AI concerned with studying and
developing how machines understand written
and spoken word.

Parsing The process of analyzing a document and
transforming it into a format (e.g., text) that
software can interpret.

Pytest A testing framework for the Python coding
language, that allows users to implement tests
for their code.

Test-Driven Development A software development process entailing the

creation of unit tests for every software aspect
before its development, and continual and
constant testing as the software grows.

Installation instructions:
Install Flask to run the GUI from the Python file.

● You can install it using ```pip3 install Flask```
● Run the GUI using ```flask run``` in the project home directory.

Install Ollama
Getting Ollama to work with the API can be difficult depending on your system. Your local
machine must have an Nvidia chip if it is a Windows machine. For Macs the project can run on
any Macbook, however, you will not get satisfactory token speed unless you have at least 8 GB
of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.

You should be able to install Ollama simply by following these directions
https://github.com/jmorganca/ollama

Parsing Documents

To read content from the directory ./Documents run content_reader.py using ```python3
content_reader.py```

Creating a PowerPoint
When you run content_reader.py it will store the result in response.txt. Then that file is read by
the PowerPoint generator which you can run using ```python3 pptx_creator.py```

