

HTML5 Report Creator

Colorado School of MInes

Field Session 2014

June 17, 2014

 Tyler Lyons

Anthony Nguyen

Kolten Robison

2

Table of Contents

Client Background & Product Vision 3

Requirements 4

System Architecture 6

Technical Design 7

Design & Implementation Decisions 11

Results 13

Appendix 14

3

Client Background & Product Vision

BIMShift is a business based in Littleton, Colorado, founded by two Mines alumni, Mike

Gioia and Justin Clark. The focus of the company is to provide efficient access to

specialized data for members of construction projects. Through the usage of Building

Information Modeling, BIMShift is able to provide clients with access to huge amounts of

building metadata for people who may not be familiar with the underlying technologies

in order to efficiently hasten construction projects while being within budget.

Their primary product, DATAGate, integrates building model information from

AutoDesk® Revit® into a SQL database that is navigable through the use of their client-

specialized website access. Because of its decentralized cloud design, DATAGate

allows easy access to data from any web-enabled device. DATAGate allows the user to

update and modify Revit® model information in the database with the Manage Elements

tool, view and export Revit® models with the Model Viewer, estimate building costs with

the Estimate Costs tool, and even wirelessly access data from the construction site with

the deployment of TapTrack™ enabled sites that leverage NFC (Near Field

Communication) and QR Code (Quick Response Code) technologies.

Although DATAGate clients are able to easily access raw metadata, the interface lacks

the ability to create detailed analytic reports or to visually display aggregate data. In

order to add this functionality, our team was tasked with adding and integrating a

functional report-generating system into the existing BIMShift development site.

We created a dynamic filtering system that allows a client to retrieve only specific

elements whose parameters match certain values or ranges. The filtering capabilities

also include a logical operator precedence system that allows reports to be based off of

extremely intricate queries (chaining many AND and OR operators in SQL). This allows

clients to quickly leverage powerful SQL calls to create tabular reports of building model

elements and export them as Microsoft Excel compatible files. We also developed an

effective grouping tool that allows users to create visual reports from their element data,

such as a report that groups rooms by square foot area and their building departments.

4

Requirements

The overall task for our project during field session was to create a visual HTML5-

compliant representation of the project data that BIMShift keeps for their clients.

Because BIMShift is interacting in an existing and well-structured industry, a majority of

the clients involved may have little technological experience. Because of this, we made

our visual data representations friendly for even the most inexperienced users (e.g.

large buttons, obvious control flow, all site information accessible within about two

'clicks', little visual clutter). Our project takes the form of a filterable tabular report

generator as well as generated visuals to represent aggregated element data.

Functional Requirements

● Able to filter element data from the database.

○ There should be several ways to filter data by parameters.

■ Equals, NOT Equals, Contains, and Ranged.

● Ranges must extract numbers from SQL String data.

● Ranges must convert between feet inch format for lengths.

○ There must be a way to create multiple filters.

■ Filters can be in AND/OR groups to allow for building of logically

operating queries.

○ Filters can be activated/deactivated.

○ Data can be grouped by particular fields.

■ Summable parameters (Area) must be calculated.

■ Number of elements per grouped parameter must be calculated.

● Able to create and view reports from filters.

○ Fields for column display may be selected and deleted.

○ Report can be saved and retrieved from the database.

○ Able to be exported to Microsoft Excel.

● Grouped reports must contain a graphical display.

○ Graphical display must leverage the Highcharts library.

5

Non-Functional

● Use HTML5-Compliant tags.

● Create a PHP, JS, and PHP_AJAX file for each section (View and Create

Reports)

○ PHP

■ Manage page views and templates for initial loading.

■ Will pull any $_GET variables.

○ JS

■ Will control element bindings.

● Keypress, click, change.

● Used for interactivity without server requests.

■ Makes AJAX calls to update dynamic page portions.

■ Uses Highcharts to actually draw graphs.

○ PHP_AJAX

■ Handle server-side AJAX calls to replenish HTML.

■ Make SQL calls.

● Filtering, displaying reports, pulling data for graphs, etc.

6

System Architecture

The project is designed to interact between SQL databases and HTML5-compliant

GUIs. Figure 1 below shows the general system architecture and relations between the

two. Interactions between grey and blue indicate SQL calls to retrieve data, interactions

between blue and red indicate pulled SQL data to create interactive GUIs, and

interactions between red and green indicate the yielding of final report data through the

use of GUIs.

Figure 1: System Architecture

7

Technical Design

 Our program is split into two basic modules: one to create reports and one to

view saved reports. Each module, in order to comply with existing site standards used

by BIMShift, is comprised of three main files: a main PHP file, an AJAX PHP file, and a

JavaScript file. The main PHP file controls the general templating of the page’s html

code and provides div tags with ids that can be dynamically loaded via AJAX. The AJAX

PHP file is where the majority of program logic occurs, such as SQL requests, handling

AJAX calls from JavaScript and yielding proper html results, storing and modifying html

for filtering templates, and performing user permission checks. The JavaScript file

handles element event bindings so that buttons and fields are interactive and can use

AJAX requests to update html without refreshing the page as well as block user input

when waiting on AJAX returns. The general website flow can be seen below in figure 2.

Figure 2: User Control Flow

8

The create reports page allows the user to leverage complex SQL calls to retrieve

element data without knowing about the underlying technical details. Below in figure 3

is the create report page layout.

Figure 3: The Create Report page

The left side of the page contains a list of all of the parameters that a certain type of

element, in this case doors, might have. They may be added as columns to the report

table below by clicking on the green buttons next to the names or by dragging them into

the table. They are retrieved by a SQL call to the parameters tables to retrieve all

unique parameters with a category that matches the element category you are creating

a report from.

On the right side are the filtering controls, the preview table containing the first 20

results, and a save button (out of frame) at the bottom of the table. The add filter button

at the top of the page allows you to add a whole new group filter, while the add group

filter button allows you to add a sub filter to an existing filter group. Reports are

generated by matching elements that meet all of the sub filters for at least one of the

group filters. Figure 4 shows an example of a filter set that matches a storefront door

with a particular height, or all doors that contain glass in their name.

9

Figure 4: An example filtering set to generate a report.

The filter sets generate SQL calls to the database to pull all elements that match the

element category of the filtering. The elements are then filtered out in a large PHP

foreach loop that checks the elements parameters against the existing filters. An ajax

call returns the preview table for the resulting elements that meet the filter requirements.

In the column header for the preview table, there are also group by buttons that allow a

user to create a grouped report by any field. Grouped reports are unique in that they

automatically sum element number and area fields by a certain parameter field and they

generate graphical report visuals when viewing the saved graphical report. Figure 5

shows an example of a grouped report of building room usage by department, along

with a pie chart of building usage.

10

Figure 5: Department Rooms by Sq. Ft. Area.

The report graphics are created in JavaScript using a library called HighCharts. First a

SQL call is made to loop through the elements and add their area department, storing

them in an associative array that is indexed by the other parameter that the user is

filtering by. For example, in the above chart the SQL call sums all of the room area

amounts and increments them in an array that is indexed by the department name. So,

array_name[‘ADMIN SERVICES]’ would contain the value 6125.52. The resulting graph

is interactive, animated, and automatically sized and colored from the generated

element data.

11

Design & Implementation Decisions

Instead of writing a report generation page from scratch, we decided to port over a

partially finished version that BIMShift gave us access to. Although this also required us

to change a lot of the code to integrate into the BIMShift site which had changed file and

database structures since the original version, we felt that this would still be more

efficient than creating the page entirely from scratch.

Now that the project is complete we regard this decision with mixed feelings. Although it

helped us to initially create a functional filtering system, it became harder and harder to

restructure the existing system to fit into the constraints of the rest of the website and

the rest of our required functionality. If we had started on the filtering page from scratch,

it likely would have become less of a hassle to add functionality and to make the code

modular enough to support expanding client requirements and expectations.

We initially decided to use a combination of SQL queries and PHP to filter data rather

than just using PHP to postfilter data. This was to make loading times quicker and

more efficient, as well as to simplify our code and build off of existing queries. Although

this was great for our first iteration of our filtering system, this system fell short of being

able to comply with updated client requirements towards the end of the project. We then

decided to restructure the project entirely to use only PHP to perform filtering of data so

that we could filter by parameters that did not explicitly appear in the report table. For

example, if we wanted a table that listed door name and height for doors that had a

certain door finish on them, but we don’t want the column to display the door finish

which is the same across the report.

After examining how the client used a SQL table to store reports in the database, we

decided to implement 8 relational tables to store data in a very manageable way. The

reports table stores the name of a report and the category of elements it is generating,

the filters table stores the information in each user-specified filter such as filter type and

value, the filter groups table stores an ID for relating entire groups of toggleable filters

to perform logical filtering, and the reportfields table stores the different columns used

in the report generation. There are also relational tables to relate users who can view a

certain report.

Finally we decided to use pre-existing libraries to integrate both chart display, as well as

to export tabular data to Microsoft Excel. These libraries, HighCharts and PHPExcel,

12

both contain a lot of unused functionality that bloats the codebase, but we found this

acceptable because BIMShift already has a structure that supports simple PHP and

JavaScript library including.

In working on this project, we have all learned lessons regarding the overall structure of

website design. We have learned that when working on a project that is not built on a

web framework (raw PHP) it is helpful to extract code into included PHP files, otherwise

files grow too large and become difficult to navigate. We have also learned how to

create carefully balanced interactions between JavaScript and PHP via AJAX calls as

well as to prevent sequential AJAX calls from becoming out of sync with the JavaScript.

13

Results

Our goal was to design a web-based system to create reports based off of existing

client data, to integrate this system with their existing website, and to make this system

simple enough to use that people who are not familiar with the underlying technology

can generate useful reports from the data. The reports are comprised of a mixture of

tabular data and an optional graphical display. The data that BIMShift records is

construction data that is pulled from architectural files for large scale construction

projects; the main project that we use to test is a Children's Hospital construction

project. In order to create the tabular reports, we were required to implement a system

that allows users to filter through many interrelated SQL tables of hundreds of

thousands of elements.

Our final product includes all of the core requirements specified by the client. We have

created a system to allow the filtering of data, complex filtering with logical operations,

saving and viewing of reports, grouping of fields in reports, inclusion and exclusion of

different element parameters, generation of visual reports from grouped data, export of

report graphics in several formats, and exporting of tabular report data to Microsoft

Excel.

14

Appendix

Information about some of the libraries and languages we used can be found at the

following links:

Highcharts: http://www.highcharts.com/

PHP: http://www.php.net/

PHPExcel: https://phpexcel.codeplex.com/

SQL: http://www.mysql.com/

http://www.highcharts.com/
http://www.php.net/
https://phpexcel.codeplex.com/
http://www.mysql.com/

