Spatial Corporation
Test Center Failure Summary Page
Adam Pryce & Greg Hopkins

Abstract
Spatial Corp provides high-performance, cross platform 3D software components to be used by Computer Aided Design software developers. Test Center contains an Overview Page where currently the results of tests are displayed in a table that is organized similarly to the structure of the testing system. 
The goal of our project was to create a new Failure Summary Page that organizes and summarizes the test results independently of compiler. This allows developers, product managers, and quality assurance to identify the source code causing the most failures. With some 50 thousand tests this can be an arduous task to do by hand. Our Failure Summary page allows users to quickly obtain the data in the format they need.
Introduction

Test Center is a homegrown webpage used to manage the testing and building of Spatial Corporation’s products. Currently the results of the testing are shown on the Overview Page. The database is constructed similarly to how the tests are run, by platform. 
Our project was to create a Failure Summary page that groups the failures in an easy to read format with minimal clutter and high performance. The results also needed to be absolutely accurate as they would be relied upon by many within the company to decide if the product is ready to ship. 
Spatial Corp uses an Agile development strategy. This requires their code to meet all acceptance criteria constantly so that within days the latest version of a product can be implemented, built, fully tested, integrated, and packaged. This process requires an instant understanding of where any regressions lay in a manner that does not take very much time or energy.
Specifically, Spatial asked that we make the new Failure Summary Page work seamlessly with the existing Test Center infrastructure. Our page needed to work side by side (and in the end merged) with the previous Overview Page, so some time was taken to learn the underlying structure of Test Center and the test results database schema. Our product meets all of these requirements and is easily maintainable by anyone at the company with previous Test Center experience.

Requirements
Functional Software Requirements

The schema used in the results database requires that we define a few terms:

· Product Line – Group of related products (e.g. ACIS, InterOp)

· Product – Individual sellable packages (e.g. ACIS Modeler, InterOp SolidWorks to ACIS Translator, InterOp Step to Parasolid Translator)
· Stream – A code pool within a product line (e.g. ACISNTS, ACISIW)
· Test Class – The physical grouping of tests which often relates to how the tests were created, but does not always relate to what is being tested
· Arch – A combination of the compiler and the OS (e.g. NT_VC8_DLL, LNX_64)

The Failure Summary Page, accessible through Test Center, shows test failures regardless of arch. For example, if in a test class there is one test that failed on four arches, the test summary would show only one failed test for that test class/product. On the other hand, if there were four different tests that failed on various arches, the test summary would show four failures for that test class/product. As shown in Figure 1, if the domain is all tests and each arch circle contains the tests that failed in that arch, then the test summary would return the union of all the circles. 
[image: image1.png]Wisual Studio
2005

isual Studio
2003

Linux
AMD 64

Linux AMD



[image: image7.png][Group [Time [Sleeping

&
il 1110 A3 [No [Group [Time [Sleeping [Group [Time [Sleeping
T [1110 AM [No jl 1110 A3 [No I Epatial [11.10 AM [No
B [T110 AM fres B [rT10 AM s [Toilers[T1.10 A3 yes

7 [11:10 A3 fno





Figure 1
The Failure Summary page will use the filter dropdown interface already used by the Overview page including view mode and date filter. When accessing these pages the Overview page is the default so as to not alter any existing workflows. The rows in the Failure Summary page are the same as the Overview page, but there are only two columns: Total Tests and Total Failures (Figure 2). The Total Tests column displays the number of tests in a TestClass/Product, similar to the Overview page. The Total Failures column shows the number of failures for each row in the table (Stream, Product and Product->TestClass in the Product->TestClass view and Stream, TestClass and TestClass->Product in the TestClass->Product view). The number of failures is calculated by counting each test with one or more failing results on an arch once and only once. So the number of failures can never exceed the number of tests, because tests will never be counted twice.  However, the number of failures may be higher than the highest failing platform because some tests will probably not fail on all platforms. 

[image: image2.png]Test Center

Test Manager Overvie Stream Configuration  Distributions  Machine Manager  Test Runner  Help  External Links

Choose view Parameters =

IOPVI7IW. v
Days Previous:
View Mode: | Test Class > Praduct v

O0verview ®Faiure Summary

Stream:

Displaying results from 2008-06-10 09:49:21 to 2008-06-11 09:49:21

10PvO7IW 131583 12700

*Note: If a Test Class does not show up under a product that means that there are no tests associated with it

Acceptance 16307 11673
Acis Catia v &s z
Acis Catia Vs 820 244
Acis Catia VS Mfg Option 578 s61
Acis 1ges 52 12
Acis Invantor 133 1
Acis Parasalid a7 B
acis Profe 148 4
Acis ProfE Mg Option 251 243
Acis Salidworks 239 221
Acis Step 75 B
Acis Unigraphics 173 1
Acis Unigraphics Mfg Option s13 428
fcis vida 15 o
Generic Adis 14 s
Ganeric Iges 10 s
Ganeric Inventor 2 2
Ganeric Salidvarks 46 a1
Generic stap s o
100 13610 3183

AcceptanceNew 730 o2
Acis Catia v 1 1
Acis Catia Vs 10 i
Acis Catia VS Mfg Option 1 1
Acis 1ges 23 22
Acis Invantor 2 z
acis Profe s s
Acis ProfE Mg Option 26 26
Acis Salidworks 7 B
Acis Step 15 1
Acis Unigraphics 114 101
fcis vida a1 a1
Ganeric Igas 1 1
Ganeric Salidvarks s B
Generic stap 2 z
Generic Unigraphics 2 z
100 495 433




Figure 2
Similar to the Overview page, the user can drilldown. This allows them to see more detail by clicking on the data in a cell. The additional data shown includes the Test Name, Test ID, Product, Test Classification, Owner, and Comment. In addition there is one column for each arch on the stream, including those with no failures in this drilldown. The arch cell contains a color to indicate whether a test passed, failed, or was not run. In addition, if a test was run there is a time stamp and in the case of failures a link to the relevant log file.
[image: image3.png]Test Center

TestManager  Results Overview  Stream Configuration  Distributions  Machine Manager  TestRunner  Help  External Links

Tests for ACISR18IW and AcceptancePark and ACISR18
Displaying 44 results from 2008-06-03 10:40:52 to 2008-06-13 10:40:52

4% Errors Edge non 62 4% Enor; Edge non 62
AccaptDevSCHYindia/5433-cc-blends/g2_Backsave_L.sem 216371 ACISRIS  AcceptancePark @
2008:06:07 07:04:50.0  2008-06-07 10:50:20.0
AccaptDeySCH/kemel/s767-ApiTolerizeEntity/tedgeFailsafe.scm 216501 ACISRIS  AcceptancePark (i) 2008-06-07 071041500 2008-06-07 10:50:29.0
4% Errors Edge non 62 4% Enor Edge non 62
AccaptQASCH/india/5433-cc-blends/ g2_Backsave_L.sem 216324 ACISRIS  AcceptancePark @
2008:06:07 07:04:50.0  2008-06-07 10:50:20.0
ek Errors G2 discontinuity 4% Errr: G2 discontinulty
AccaptQASCHYindia/433-cc-blends/g2_g1_discont.scm 216316 ACISRIS  AcceptancePark (@ | In v 1:0080000:000000 1 in 1 1:000000 0.000000
2008-06:07 07:04:50.0  2008-06-07 10:50:20.0
ek Errors G2 discontinuity 4% Errr: G2 discontinulty
AccaptQASCHYindia/3433-cc-blends/ g2_g2_discont.scm 216318 ACISRIS  AcceptancePark (@ | 74,098080,0:880008 1 |1 44800908 8:009000
2008-06-07 07:04:50,0  2008-06-07 10:50:25.0





Figure 3
Non-functional Software Requirements
Additionally, the customer had a few other requests. The current page has a significant loading time and Spatial would like the new page to load considerably faster. Also, to match the existing Java structure, the new webpage includes the following components as illustrated in Figure 4:

· JSP webpage for user interface 

· Java bean to encapsulate functionality and act as container for web page
· Java Get Runner to call the query (implemented into current database connection interface)

· SQL query of the database

[image: image4]
Figure 4
Design
Query Design

The runners use a MySQL statement to query the database. When designing these query statements, the most important aspect is accuracy.  To make sure we are getting the correct data, we built tests that use a custom database.  This database contains a small amount of known data for which we know the expected result that the query will return.  When we get all these tests to pass, we know that the query is returning accurate results. The tests cover the three cases of overlap in Figure 1 between arches: complete overlap, partial overlap, and no overlap.

Another important aspect of the query design is performance.  If we made a page that returned accurate results, but it took five minutes to run, then it would not be acceptable.  We found that the best place to increase performance was at the query level. Two queries may return the same exact same result, but one may be much slower because of how the result is assembled in the query.  This led us to develop multiple versions with the same output data.  We then tested these queries individually on a large amount of data, and chose which one to use based on which query performed the fastest.  We time the queries using human judgment, as we are concerned with perceptible improvements, not improvements on the scale of a few seconds.

Following is a simple example of the performance improvement process.  Let’s say that we have data on whether some students are sleeping during our final presentation.  Also let’s say that we want these results grouped by which group the students are in (Spatial or Toilers2).  We might come up with an expected result in a format like what is shown in Figure 5.

	Group
	Time
	Sleeping?

	Spatial
	11:10 AM
	No

	Toilers2
	11:10 AM
	yes


Figure 5
In our MySQL tables we might have data like what is shown in Figure 6. The numbers in the names and group column are references to other tables in order to minimize the storage of duplicate names or groups.
	Name
	Time
	Sleeping?
	Group

	1
	11:10 AM
	No
	1

	2
	11:10 AM
	No
	1

	3
	11:10 AM
	yes
	2

	4
	11:10 AM
	no
	2


Figure 6
From this point you could formulate your result in two different ways.  You could make a simple query to retrieve the group names. The names are then grouped as shown in Figure 7. You could also make a slightly more complicated query and group by the group reference numbers first, and then retrieve the group names later as shown in Figure 8.
[image: image6.png][Group [Time [Sleeping [Group [Time [Sleeping
T [r0AM [Spatial [11.10 A2d]
o pana ° [Group [Time  [Pleeping
T [r0AM [Spatial [11.10 A2d]
° paa © =" \Epatial |1110 AM]tTo
B [T110 AM fres [Toilers2[T110 Adfpes | T R
B [TT10 &M fro [Toilers2[1110 Ao





Figure 7

If the group names are retrieved like in Figure 8, the number of group name retrievals that are performed is cut in half, which in theory, as well as in practice, performed much faster than the query shown in Figure 5.

Schema Layout

With our query strategy we can now get the data needed. The database’s schema follows a traditional relational database design.  A simplified schema for the tables we are using is diagrammed in Figure 9.  Each table is shown with its own box, with the columns listed in the box.  Primary keys are shown next to columns using “PK.”  Foreign keys that reference other tables are labeled as “FK.”  Relationships are shown with a line going from one table to another table, with the double hash meaning “one” and the crow’s feet meaning “many”.  For example, one test can relate to many results, or one error relates to many results.


[image: image5.emf]test

PK ID

FK1 test_class_fk

FK2 test_name_fk

FK3 product_fk

result

PK ID

FK2 test_fk

FK1 stream_fk

pass

datetime

FK4 error_fk

FK3 platform_fk

test_name

PK ID

name

test_class

PK ID

name

product

PK ID

name

stream

PK ID

name

error

PK ID

message

platform

PK ID

FK1 arch_fk

arch

PK ID

name


Figure 9
Implementation Details and Results


Before work could begin we received our machines and set them up to work in the Spatial Corp development environment. Setting up the development environment is detailed on the Spatial Wiki (spawiki). Most of the setup involves setting up Eclipse. Spatial uses subversion for its version control and Tomcat 5 to communicate between database servers. We had some issues with the order of the instructions and corrected spawiki as we went along. Preparing our computers for work required about a day and half.

The Failure Summary Page required a few key decisions when implementing. Due to a desire for speed, specific entity classes were created to hold the data for the Failure Summary page and its corresponding drilldown page. These classes held only the data needed by the page to reduce the initialization of unneeded variables. Otherwise the project largely owes its code structure to the Overview page.
The webpage is a Java Server Page, which consists of a mix of Java code and HTML code. They also make use of Cascading Style Sheets (CSS), allowing elegant interaction with the Java Bean. The HTML code allows for easy use in web browsers. The Java code in combination with the CSS allowed us to easily implement features like mouse over shading and data formatting that otherwise may not have been possible in the time frame.

The Failure Summary Page loads within seconds. This has allowed users to work with ease without large work delays every time they wish to see test results. The initial response has been very positive and it seems it will be a welcome improvement.

Glossary
Agile – A development environment that uses short (in this case, 2 weeks) iterations so that work is continually tested and integrated. This method also uses frequent customer input to help aim the project.

Arch – A combination of the compiler and the OS (e.g. NT_VC8_DLL, LNX_64) 
Product – Individual sellable packages (e.g. ACIS Modeler, InterOp
Product Line – Group of related products (e.g. ACIS, InterOp) SolidWorks to ACIS Translator, InterOp Step to Parasolid Translator)

Stream – A code pool within a product line (e.g. ACISNTS, ACISIW)

Test Class – The physical grouping of tests which often relates to how the tests were created, but does not always relate to what is being tested






JSP Web Page





Java Bean





Data Base 


Connection Interface





Get Runners





Add Runners





Delete/Update 


Runners





Database





Figure � SEQ Figure \* ARABIC �8�








_1274862133.vsd
text


Table



