Toiler’s Project #1
Final Report

Release 1

Toiler’s project #1
VERSION 1.0

FINAL REPORT
RELEASE 1

6/23/2006
Prepared for:

Qi Han
Prepared by:

James Deyerle
Phil Loden
Toiler’s project #1
VERSION 1.0

FINAL REPORT
CONTENTS

1. INTRODUCTION
1

1.1 Abstract
1

1.1 Purpose
1

1.2 Background
1

2. PROJECT CHARACTERISTICS
2

2.1 Functional Requirements
2

2.2 Project Characteristics
2

2.21 LEACH Network Model
2

2.22 Sensor Models
3

2.23 Simulation Data
5

2.3 Simplifying Assumptions
5
3. PROJECT DESIGN
6

3.1 Design Flow
6

3.2 Design Timeline
8
4. IMPLEMENTATION
8

4.1 Design Drift
8

4.2 Redefined Requirements
8
5. CONCLUSION
9

5.1 Results
9

5.2 Conclusion
12

5.3 Future Directions
12
6. APPENDIX
12

6.1 Glossary
12
7. REFERENCES
12
1. Introduction

1.1 Abstract

The study and implementation of wireless sensor networks is an emerging field in computer science, with applications in fields from environmental monitoring to national defense. These networks consist of individual sensor nodes which typically collect and transmit data to a central server. Due to the distributed nature of these networks, energy consumption is one of the primary determinants in network efficiency. Algorithms that optimize this factor are an area of intensive research and the subject of this project.

The goal of this project is to evaluate one such algorithm using the open source network simulator ns2. LEACH, or Low Energy Adaptive Clustering Hierarchy, consists of a percentage of randomly chosen nodes to act as cluster heads. Once the cluster heads have been determined, they broadcast a signal notifying other nodes within range. The nodes can then calculate their optimal cluster head. These heads act as a middle layer between individual nodes and the server, relaying data and optimizing packet size. By definition, the LEACH model ensures that only two hops separate the node from the database. A network consisting of 100 randomly deployed nodes implementing the LEACH model will be used to test programs for node management.

The simulation data obtained by implementing these algorithms using ns2 will depict which is the most efficient in terms of energy consumption. These data will give researchers a better understanding of which models produce particular results, thus facilitating the goal of this project.

1.1 Purpose
The purpose of this project is to evaluate various programs for wireless sensor network management and to determine a model which optimizes power consumption.
1.2 Background
Research into the design and implementation of wireless sensor networks is a relatively recent addition to the computer sciences. Made possible by advances in the miniaturization of computer hardware and battery longevity, these networks consist of nodes capable of collecting information from their environment and transmitting this information to a centralized data collection point. Applications range from meteorology to manufacturing and national defense. Because they are composed of wireless, typically battery-powered devices, the issue of power consumption is the primary determinant of network usefulness. Programs for network management must find the optimal design to increase the overall lifetime of the wireless sensor network.
2. Project Characteristics

2.1 Functional Requirements
We will be implementing a network simulation using NS-2 in a linux environment. The simulation must follow the LEACH network model discussed in section 2.21. The simulation includes implementations of three specific sensor models as discussed in 2.22. The program will then write the data from the simulation to a file in order to be graphically displayed by another program. The graph must show overall energy of the network versus time in order to analyze which model is more energy efficient.

2.2 Project Characteristics
2.21 LEACH Network Model

The overall network model will be that of LEACH. It consists of a percentage of randomly chosen nodes to act as cluster heads (which are the green nodes in figure 2.1). Once the cluster heads have been determined, they broadcast a signal notifying other nodes (which are the aqua nodes in figure 2.1) within range. The nodes can then calculate their optimal cluster head, forming the regions displayed in figure 2.1. The cluster heads act as a middle layer between individual nodes and the server, relaying data and optimizing packet size. By definition, the LEACH model ensures that only two hops separate each node from the database. Although this is the model for the network itself, the research of this project is not focused on network topology but the sensor models specifically. The individual nodes in the network will be implemented using one of three different models.
[image: image1.jpg]Energy

25 :

Total Energy

“tolalreﬁergy da\t“I —

20

30

40

50
Time

60

70

80 90 100

Figure 2.1: LEACH Diagram
2.22 Sensor Models
The focus of the research for this project is the sensor models. The three models discussed in this section are Active-Listening, Active-Sleeping, and Active-Listening-Sleeping which were developed by Qi Han as potential sensor models using the LEACH network model.

In the AL or Active-Listening model, the sensor is initially in the “listening” state which is where the sensor is waiting for either a source-initiated update or a consumer-initiated update. A source-initiated update occurs if the sensor value falls out of the designated range, whereas a consumer-initiated update occurs if the server requests the sensor value. Once the sensor is required to process one of these updates, it is transitioned into the “active” state where it will then transmit the data to its cluster head or to the server, directly, if the node is a cluster head itself. After transmitting, the sensor will transition back into the “listening” state. Figure 2.2 shows the sensor state diagram.
[image: image2.jpg]Cluster Head @
Sensor Node ©

Figure 2.2: The Active-Listening Model (AL)
The AS or Active-Sleeping model is initially in the “sleeping” state. Here, the sensor is not receiving at all, which means that it cannot receive consumer-initiated updates. The cluster head, however, is never asleep and will queue the consumer-initiated updates until the target node is no longer sleeping. The two ways the sensor shifts to the “active” state are by either a source-initiated update or by a certain time Ts that the node has been “sleeping.” While “active” the node transmits the data and can also perform consumer-initiated updates. After processing the last source or consumer-initiated update, the sensor toggles back into the “sleeping” state as shown in figure 2.3.

[image: image3.jpg]Upon first source-iniiated update
or consumer-initiated update

After processing last source
or consumer-initiated update

 Figure 2.3: The Active-Sleeping Model (AS)

The final sensor model to be simulated is the ALS or Active-Listening Sleeping model. This model is a hybrid of the AS and AL models because it combines all three states into one design. Just like the AS model, this model is initially in the “sleeping” state. It only toggles to the “active” state if a source-initiated update has occurred or an arbitrary time Ts has passed. Once the sensor is finished transmitting data, it transitions in the “listening” state where, just like the AL model, the sensor can only go back to “active” upon a source or consumer-initiated update. If the node has been in the “listening” state for Ta time units, it will switch back to the “sleeping” state. The amount of time that a node sits in the “listening” state (Ta) will converge on the optimal time as the simulation progresses since this time is dependent on the node activity pattern. The ALS model is shown below in figure 2.4.
[image: image4.jpg]Upon first source-initated update.

After T time units

Slecpie) iout waffic

After processing last source
or consumer-initiated update

 Figure 2.4: The Active-Listening-Sleeping Model (ALS)

2.23 Simulation Data
There will be two kinds of data, both random and real, used to test the three sensor models described above. As described by Qi Han, the random data will simulate temperature. The sensor nodes in the network will initialize their values by randomly and uniformly picking a value from the range [1, 100] in order to approximate temperature readings in Fahrenheit. These values perform a random walk in one dimension: every second, the values either increases or decreases by an amount sampled uniformly from the range [0, 5]. For example, a node in the network might be initialized with the value “24.” At the next time step (second) in the simulation the value might change to “25” or “22” depending on the second random value chosen. Then the value will continue to change as the simulation runs, always within 5 of the previous value.
The real data used will be pulled from the NOAA website. This is the real-time data from moored ocean buoys. The measurements include surface winds, sea surface temperature, upper ocean temperature and currents, air temperature, and relative humidity. Samples are taken every 10 minutes.

2.3 Simplifying Assumptions
Several factors are not being included in this simulation. The first is that we are not taking into account what would happen should a node fail or die during a transmission or reception. In the simulation, a node can only die at the end of a time step. Another simplification made with regards to the data is that the real data will only use the temperature portion of the files we download. The other variables, such as sea surface wind speed and humidity will not be used.
3. Project Design

3.1 Design Flow
Here is the design flow for the project. Each block will be explained in further detail below:

[image: image5.jpg]After Ta time units

Upon first source-iniated update
o after Ts time units

Upon first source or
consumer-nifiated update

‘without transmission

“After processing last source
or consumer-nifiated update

Figure 3.1: Architectural Design Flow

Data
As discussed above, there will be two kinds of data that feed into the simulation. The random data will be represented by a text file called rand_temp_walk.dat. This text file will be generated by a c++ file called randomGenerator.cpp. The real data will be created similarly but with a little more work involved. We downloaded 100 text files from the NOAA site. Each of these files is meant to represent a single node and all the values that node will hold for the entire simulation. The c++ file called realGenerator.cpp uses a helper file called realdatabit.cpp. A realdatabit object holds all of the data for a single time step as an array. The index of that array is the node number in the simulation. In realGenerator.cpp, there is an array of realdatabit objects that all of the data read from the files is fed into. Once all the files have been read and the data has been placed in the data structure, an output file is created in a format that the TCL Script file needs. It is important to note that these text files are generated before any simulation occurs. The simulator does not determine the value of the nodes. The text files describe what value each node will have at any given time during the simulation.
C++ Files
The LEACH topology was defined using TCL Script that MIT had generated. Because of this, the majority of the code is embedded within the TCL implementation. C++ files were used to generate the data files for both the random and real data traces. These are then read by the TCL Script to drive the simulation.
TCL Script
TCL is used here in order to make interacting with NS-2 easier. The TCL scripting language is fairly simple. All a TCL file does is create nodes and sets parameters that NS-2 can understand. This is then run using NS-2 which drives the simulation.
NS-2
NS-2 is the network simulator that the design is centered around. Because we will set the appropriate parameters in the TCL script fed into NS-2, it will produce a raw text file containing the information that describes the energy dissipation over time.
Text Files
There are a few text files in our design. Two text files will be generated with out c++ files called rand_temp_walk.dat and real_temp_walk.dat. These are read by the TCL Script in order to define what values the nodes have at any given time during the simulation. NS-2 creates an output text file that contains the raw information about the energy consumed by the network as time passed. This information will be used by GNU Plot to represent it graphically.

GNU Plot
This is an open source program that allows us to view the information in the text file that NS-2 produced in a graphical format. This will give us easy to view information on the overall results of our simulation. This graph will be stored in another file for future reference.

3.2 Design Timeline
[image: image6.png](Week 4

(Week 5

(Week 6

Install and leam NS-2
implement LEACH

Setup sensor energy model

Setup data traces

Integrate LEACH and sensor
energy model

Display energy dissipation in
real-time

Setup quality-aware sensor
data collection framework

Implement AL, AS, and ALS
models

Implement sensor state
management

Integrate ALS and sensor
state management

Figure 3.2: Design Timeline

Above is our design timeline. The tasks of our project are listed to the left, the times those tasks are accomplished are listed to the right, and the colors represent who completed the designated tasks.

4. Implementation

4.1 Design Drift

The original design described how the majority of the code would be in c++ files in order to generate TCL script to drive NS2. The purpose of this was to minimize the amount of TCL that we had to learn while maintaining the flexibility and comfort of primarily coding directly in c++. The implementation actually drifted slightly away from this original design. The majority of the code is actually directly in TCL without first going through the c++ files. The reason for this was due to the fact that the code used to create LEACH was taken from MIT which was entirely in TCL with only one or two c++ files that did rather little comparatively.

4.2 Redefined Requirements
Because of the change in design, the project as a whole was set back substantially. All code that describes how data flows into the simulation, how the individual sensor models are implemented, and how the simulation runs overall is completely determined by the way in which we implemented LEACH. Since we did not implement LEACH ourselves, we had to learn how MIT did it by looking through the numerous files that define it. This, coupled with having to learn TCL in far more detail than originally foreseen, consumed a lot of time. This delay was significant enough to put the project’s success in jeopardy. After meeting with our client, we were given a more succinct project goal which was to complete the quality aware sensor network and have a functional simulation that runs with both the real and random data defined above using the LEACH topology. A graph displaying energy dissipation over time is also a functional requirement that we will still meet.

5. Conclusion

5.1 Results

The simulation produced four graphs that we will discuss here. This first graph (Figure 5.11) shows the LEACH routing protocol energy consumption without any data being sent. Each jump on the curve depicts when cluster heads are being reconfigured.
[image: image7.jpg]realdatabit.cpp 101

0 Data Files

O

realGenerator.cpp

randomGenerator.cpp

I

I

real_temp_walk dat rand_temp_walk dat Image File (Graph)
TCL Seript GNU Plot
Ns-2 —¥ energydat

Figure 5.11
The next graph (Figure 5.12) shows the energy consumption of the three sensor energy models without having any data sent. The jumps on the curve once again represent the times when the cluster heads are being chosen. It shows Active-Sleeping to be the lowest for energy cost and Active-Listening-Sleeping to be the most expensive.
[image: image8.jpg]25

15

Energy

05

Total Energy

Active-Listening-Sleeping --->---

AclivelrLisleningI —

Active-Sleeping -----,

Time

80 90 100

Figure 5.12

[image: image9.jpg]Energy

120

100

80

60

40

20

Total Energy

AclivelrLisleningI —

10

20

30

40

50
Time

60

70

80 920

100

The last graph (Figure 5.13) that we have created depicts the energy consumed by the network while processing our rand_temp_walk.dat file with the Active-Listening model.
Figure 5.13

The last graph (Figure 5.14) that we have created depicts the energy consumed by the network while processing our rand_temp_walk.dat file with the Active-Sleeping model.

[image: image10.jpg]Energy

10 :

Total Energy

Active-Sleeping —+—

50
Time

60

70

80 920 100

Figure 5.14

The last graph (Figure 5.15) that we have created depicts the energy consumed by the network while processing our rand_temp_walk.dat file with the Active-Sleeping model.

[image: image11.jpg]Energy

18

Total Energy

Active-Listening-Sleeping’ —+—

Time

920

100

Figure 5.15
5.2 Conclusion

Overall the project as a whole was a success. Despite the unfortunate change in our design a running simulation was still possible. Our graphs show that our simulation fulfills the requirements.

5.3 Future Directions

The next step is to define functions that take the simulation variables as parameters instead of hard coding the values. Also, direct comparisons between alternate routing protocols, alternate sensor energy models, alternate topologies, and multiple base station situations should follow the work accomplished by this project.

6. Appendix

6.1 Glossary

AL – Active-Listening model for nodes in the network.

ALS – Active-Listening-Sleeping model for nodes in the network.

AS – Active-Sleeping model for nodes in the network.
LEACH – Low Energy Adaptive Clustering Hierarchy. This is the network topology used for the nodes in our simulation.
NOAA – National Oceanic and Atmospheric Association. This is where the real data for the simulation comes from.
NS-2 – Network Simulator 2. This is the platform that our simulation will run on.
TCL Script – Tool Command Language Script. This is our intermediate code that will initialize and drive the simulation in NS-2.
WSN – Wireless Sensor Network. This is the kind of network that we are simulating.
7. References
[1] Q. Han, S. Mehrotra, and N. Venkatasubramanian. Sensor Data Collection with Quality Guarantees. May 14, 2006.

[2] NOAA. Tropical atmosphere ocean project, pacific marine environmental laboratory. http://www.pmel.noaa.gov/tao/, June 2006.

[3] D. Culler, D. Estrin, and M. Srivastava. Guest Editors’ Introduction: Overview of Sensor Networks, IEEE Computer, 37(8). August 2004.

[4] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin. Application driven systems research: Habitat monitoring with sensor networks, Communications of the ACM, Special Issue on Sensor Networks. June 2004.

[5] K. Romer, O. Kasten, and F. Mattern. Middleware Challenges for Wireless Sensor Networks, ACM SIGMOBILE Mobile Computing and Communications Review, Vol. 6, No. 4, October 2002.

[6] J. Zhao and R. Govindan. Understanding Packet Delivery Performance In Dense Wireless Sensor Networks, ACM SenSys, November 2003.

[7] W. Rabiner Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient Community Protocol for Wireless Microsensor Networks, ‘Proceedings of the 33rd International Conference on System Sciences (HICSS ’00), January 2000.
PAGE
5/22/2005

