Graphical User Interface for Network Simulation

PRIME Research Group

Presented to: Dr. Jason Liu and Alex Probst
By:

Joseph Bauer, Brett Kuskie, Dallas Nutsch

Executive Summary

The goal for this project was to create a graphical user interface using GTK+ and Linux which will allow configuration of a simulated network represented by Domain Modeling Language (DML) text. Displaying and editing properties, creating and saving DML files, graphically showing data from DML files, and applying templates for properties are all components of the functionality of the GUI.

With portability being a major goal for our GUI, our group has chosen to use the GTK+ library to create the graphical user interface. GTK+ is capable of running on Windows and any Unix/Linux system with very minimal code alterations. Libdml, the domain modeling language library, used to incorporate correct DML parsing and modification, has been a major tool used in the operation of the GUI.
All functionality except shortest path routing, due to lack of implementation time, has been implemented into the graphical user interface. The implemented features allow the user to create, edit, and modify network objects and view the objects as icons in the network view.

Our team is pleased with the portable, expandable and useful GUI we have created.
Table of Contents

Executive Summary……………………………………………………………………. 2
Table of Contents ……………………………………………………………………… 3
Abstract………………………………………………………………………………... 4
Introduction……………………………………………………………………………. 5
Requirements…………………………………………………………………………… 6
Design……...…………………………………………………………………………… 8
Implementation………………………………………………………………………… 14
Conclusion…...………………………………………………………………………… 24

Abstract
PRIME SSFNet, a powerful real-time network simulator is used for studying large-scale computer networks. A user may load a previous network configuration using DML files, view the network links, routers, and hosts using the network view feature, or create a network and save the DML configuration file. The graphical view of the network allows the user to make changes to links and properties to meet requirements.

PRIME research group at Colorado School of Mines is currently developing large-scale network modeling. To this end, PRIME has asked our team to create a graphical user interface that allows the modelers to create and parameterize the virtual network, to dynamically change network configurations in real time, and to visualize the state of the network during simulation in real time.

The user will be able to create a network using the graphical tool kit, properties for hosts, routers, and interfaces will be modifiable in the properties window. This graphical user interface will be able to store the modifications and creations of networks as DML files for optimal use.
Background

SSFNet is a C++ implementation of SSFNet, which is a collection of simulation components for modeling communication networks. SSFNet is implemented on top of SSFNet, our high-performance parallel simulator. SSFNet implements network simulation infrastructure, which helps construct large-scale network models from components like hosts and router. SSFNet contains various network protocols, including IP, TCP, UDP, HTTP, etc.
With the support of SSF, SSFNet is capable of running very large network models both on shared-memory multiprocessors and on distributed-memory clusters. Compared against other network simulators, such as NS and JavaSim, SSFNet achieves much better performance both in terms of speed and memory consumption. Its smaller memory footprint and its capability of parallelization make SSF amenable to simulating very large network models that have never been achieved before.

Introduction

Purpose
PRIME Research Group has requested that our team design a graphical user interface (GUI) for network researchers. PRIME SSFNet is a large network simulator designed for studying computer networks. The PRIME Research group is looking to create a graphical user interface that will allow network researchers freedom in configuring and controlling simulation parameters and visualization of simulation results at runtime for fast prototyping and first-hand validation of network models.

The purpose of this paper is to explain the team goals and requirements that will meet the client’s needs.

Goals
The goal of this project is to create a graphical user interface, using Linux/GTK+ that will allow configuration of Domain Modeling Language (DML) to represent the simulated network. Well written documentation, portability, with maintainable and expandable characteristics is the underlying concentration.

Requirements

Requirement Overview

The following are the general, large scope, requirements for the projects success:

1. The user-friendly graphical user interface must allow the modelers to create and parameterize the virtual network

2. Dynamical changes to the network configurations and visualization of the state of the network must be in real time.

3. Must be open source, well documented, and easily portable.

Besides the graphical user interface being user friendly, it must be easily portable between any platform using Linux/GTK+. Users of the application should be familiar with SSFNet and the construction of DML files. The interface, supporting real-time interactions, allows users to configure and control the simulation parameters and visualize the simulation results at runtime. In order to meet the requirements in the time allotted the requirements have been broken into primary and secondary requirements to ensure priority characteristics are finished as planned.

Functional Requirements
Primary Requirements

1. Utility that reads DML files

· Parse DML files

2. Graphically view data from DML files

· Tree View

· Graphical Network

3. Allow configuration of attributes

· Bit rate

· Ids

· Names

· Protocols

4. Save DML files

Secondary Requirements

 1. Zoom Feature

 2. Templates

 3. View Simulation

 4. Drag and Drop windows/visuals

Non-Functional Requirements

Primary Requirements

1. Easy-to-use graphical user interface

2. Expandability

3. Portable

4. Well Documented
Design Overview
The Design of our project is broken into four separate components: Network View, Network Tree, Properties List, and Menu Bars. Each component of the project has its own set of items and actions. The diagram below summarizes the items and actions of the entire project. Due to the technical design of the GUI, breaking the design up as seen in the diagram allows specific time allocation to each part and the ability to produce a user friendly GUI.

Centered in the diagram are the four separate components of the entire project design: Network View, Network Tree, Properties List, and Menu Bars. These four parts will be combined at the end of the project to produce the user friendly graphical user interface. Each component, during the implementation phase of the project, has two sub-components: Items and Actions. Diagram 1.1 on the following page visually summarizes the verbal description of the group’s design.

[image: image1.png]

[image: image2.wmf]Network

Network Tree

Menu Bar

Network View

Properties View

File Menu

Edit Menu

View

Templates

Hosts/Routers

Links

Traffic

Icons

Links

Background

Properties

Delete

UI Elements

Items

Actions

Actions

Actions

Actions

Actions

Options

Select

Add

Delete

Select

Add

Delete

Select

Add

Actions

Color

Display

Center

Zoom

Link

Add

Selection

Change

Add

Delete

Change

Context Menu

Context Menu

Click/Drag

Items

Items

UI Element Description

The first major user interface element is the network tree. The network tree is a hierarchical textual description of the network and all of its objects. As DML files are read, the tree is populated with objects. Each object is given its own branch which may have an arrow attached to it. This arrow allows the user to expand or hide the branch of the tree. The network tree displays the name of each object in an associated color which represents certain properties of the object.

The properties list is an element that allows the modification of object attributes such as id, name, or network parameters. The list is populated when the user selects an object from the network tree or network view.

The network view is a graph showing the different networks, subnets, and hosts within the network configuration. A goal of the network view is to display a large hierarchy of connect components efficiently. Objects within the network are shown as icons. Connections between objects are shown as lines. Additional information such as object names is shown near the icons. Only a portion of the network configuration may be visible at one time. For instance, only one network out of many may be graphed, or an overview of the entire configuration may be viewed with networks collapsed into icons.

User interaction with the network graph involves moving the graph view port to show different parts of the graph, selecting objects within the graph, and rearranging icon positions in the graph. Moving the view port is accomplished by clicking and dragging an open part of the graph. Objects are selected within the graph by clicking on them. This allows the selected object to be modified in the property list. Icons can be rearranged by dragging them within the graph.

The menus created for the project include the main application menu and context menus. The main menu contains common actions such as opening the model files and saving them. It also contains the actions such as adding objects and viewing the selected objects. The actions within context menus depend on what has been clicked on. Context menus can be created by right clicking on the network tree or network view. The network tree context menus allow the creation or deletion of subnets, hosts, and routers. Within the network view, context menus are created by clicking on network, host, or router icons, or by clicking on connection lines. The network view context menus have additional actions for centering the view on the selected icon and expanding a selected network icon to reveal the underlying network graph.

Implementation Details

With portability being a major goal for our GUI, our group has chosen to use the GTK+ library to create the graphical user interface. GTK+ is capable of running on Windows and any Unix/Linux system. Libdml, the domain modeling language library, is used to incorporate correct DML parsing and modification. These tools and well documented and expandable code will allow our goal of a user friendly interface to be achieved.

Schedule
To make sure that the primary goals for the project were met to specification, a schedule was created. Below is a timeline (diagram 2.1) describing the implementation of the design portion of our project. During week two the interface design was made, but once it was made a GUI prototype was the main focus until the end of week four. During the GUI prototype design the four main components from the design diagram will be implemented and along side the documentation needed for future work will be made. While the completion of the documentation takes place, the testing and distribution of the desired GUI functions will be given to the client for review and suggestions. During week six the final deliverables will be handed to the client included are the following: User friendly graphical interface, Documentation, and the final report.

Implementation

Implementation Overview

Implementation for this project was broken up into two phases of design: GUI prototype (included network tree, properties list, and menus), and the network view (See diagram1.1 for specifics). The code used to create the GUI and underlying menu elements was Linux/GTK+. With the GUI written in Linux/GTK+, allows for easy portability to any Unix or Windows machine.

The user interface allows the user to create networks, routers, or hosts and edit the properties for each element as well as view all objects created in a network tree. Viewing the created objects on the GUI is done with network view items and actions. Once the objects are created and properties set, a DML file is created and saved so the user may run a simulation.

Network View – Design Approach

In order to meet the project goal of visualizing the state of the network, a component called the Network View was designed for the PRIME GUI project. The network view is a 2d graph that shows information about the hosts, connections, and parameters for the network configuration. In designing the network view, many issues were addressed:

Viewing:

Because it is the most common and natural element to display information about a network, a 2d graph was implemented to visualize the network topology. The configuration DML files may be large and hierarchical, so additional features such as scaling and panning were considered from the start. Another approach considered was to show only portions of the graph at a time such as a network and its immediate subnets and hosts. If each icon in the graph is given a unique location in the graph, each branch of the graph can be shown at a discrete scaling value for the graph. For example, at a scale factor of 200%, level 2 objects such as hosts or subnets can be shown while at a scale factor of 100%, top level network objects are shown. This was combined with a continuous scale factor that allows the user to control the scaling and calculates what part of the graph to display for a give scale factor.

Object Representation:

Networks, hosts, routers, and subnets are displayed as icons within the graph. The icon’s position can be the result of data read from the DML definition, automatically placed by the layout methods, or user specified. Below each icon, the name of the icon is displayed.

Complex/Large network configurations:
Many of the configuration files to be used with the GUI project contain much more information than can be displayed at one time. Because the DML specifies networks, subnets, and hosts in a tree structure, this has been used to reduce the amount of information being displayed. Depending on the graph scale factor, networks which may contain many hosts can be displayed as a single icon while hiding the underlying structure. Using the zoom controls, context menu, or mouse buttons, the user can expand the single icon to reveal the hosts within the network.

Network Boundaries:

In order to determine which icons are grouped together within a network, a boundary is displayed in the form of a bounding circle. Without displaying some sort of boundary it is difficult for the user to identify which icons belong to the same network when there are two or more networks displayed in the graph.

Graph Layout:

While some configuration files specify icon locations, others do not. In order to display the network in a way that makes sense, the icons have to be assigned a position. To do this, a layout system was created. This system recursively arranges icons within the networks, and then arranges parent networks. The end result is a layout in which icons do not overlap and grouped icons such as hosts within a network are placed within the same region in the graph.

Indexing:

Because the application is meant to work with a large number of network objects, there must be an efficient way to find icons within a region of the graph. To accomplish this, an index was created which is based on spatial partitioning. Using this index, icons within a rectangular region of the graph such as a view window can be found more quickly than searching through all icons.

Implementation Details – Network View

Viewing and Rendering Details

Scaled Drawing Area:
Most functionality for handling rendering and viewing is contained in the ScaledDrawingArea class. While ScaledDrawingArea is a c++ class, it is derived from the GtkDrawingArea object using the GObject type system. This requires that the first member of the class be a GtkDrawingArea object, and that each instance be created using the GObject type system instead of the normal c++ new and delete.

The scaled drawing area expands on the underlying drawing area class by adding the ability to scale and pan the view. This is accomplished using two members called scale and origin which contain a uniform scale factor and world origin of the center of the area respectively. These two parameters are combined along with a centering translation into a three by three transformation matrix of type MatrixD. This matrix is named “transform” and is used to apply the view port, scaling, and panning transforms to each point used in rendering.

Scaled Drawing Area also contains many member functions to handle drawing. These mirror many of the Gdk drawing functions except with a simpler parameter list and a different method of specifying coordinates. In a normal Gtk drawing area widget, coordinates are specified in screen space pixels. In the scaled drawing area widget, coordinates are specified in “world space” and are later transformed into screen space by panning and scaling. Any drawing function that accepts screen space coordinates has the word “screen” in the function name, such as DrawTextScreenXY.

Net View:

Derived from the scaled drawing area class is the NetView class. NetView is also derived using the C based GObject type system. To access the underlying ScaledDrawingArea functions, use the area() function to downcast the “this” pointer to a ScaledDrawingArea. Like the scaled drawing area, a static create function is used to instantiate the net view instead of the c++ “new” keyword.

The primary purpose of the NetView object is to coordinate user interaction with the view graph, manage the spatial index for looking up icons by region, and to handle rendering of the network graph.

User interaction with the network view takes on three forms. First, mouse events are used to pan and scale the view, select objects within the view, or move icons around. This is implemented using Gtk signals to capture mouse events. Various cases exist for mouse events, but it boils down to whether the mouse was over an object or not. For a single click, the object under the cursor is selected. If the mouse is dragged, the object is moved within the graph. Clicking on an open area with the first mouse button deselects all icons. Clicking and dragging an open area pans the view in the drag direction. Dragging with the second or middle mouse button adjust the view scale factor.

In addition to mouse options, there are some controls drawn over the graph to adjust panning and scaling with single clicks. These are not Gtk widgets, but just images. When the mouse is clicked, a check is performed to see if the position is within one of the images. If it is, actions are performed. This was implemented in this way because widgets on top of the drawing area widget typically make drawing operations more expensive because of clipping.

ViewObject:

View object is a base class that also defines an interface for the different type of objects within the graph. It is a virtual base class with many functions overridden in the derived classes. These classes include each network object such as router, host, link, and network.

PartitionNode:
PartitionNode is a node within a tree formed to divide up the space of the graph. The tree is a binary tree with a rectangular region defined at each node. Each node also contains a list of pointers to the view objects within the region. The partition tree is hierarchical with each sub node defining a region contained within the parent region. View objects can be located at any node in the partition tree depending on their size on the graph. Large objects such as network links may span many partitions and so are kept at higher levels of the graph. Smaller objects such as icons are moved further down the graph.

Partitioning:
Partitioning of the space is handled by examining the position of the view objects within the node’s region. When the number of view objects in the node exceeds a certain threshold, the node is partitioned, usually when an addition view object is added to it. Partitioning begins by finding the average position of the view objects in the node. The partition can be either made on the x or y axis. The partition axis is chosen by looking at the parent axis and choosing the opposing. This alternates the partitioning axis at each level of the tree. The average x or y value for view object position is used as the location of the partition line. Next, two sub nodes are set up and their regions are calculated. The view objects are then sorted by their position into one of the two sub nodes or left to remain in the parent node. Because the view object’s position and not its bounding box are used in sorting, the object will not be contained by the partition node’s region. Instead an effective bounding box is calculated from the view objects within the node and used in visibility checks.

[image: image3.wmf]Week 2

Week 3

Week 4

Week 5

Week 6

Interface Design

GUI Prototype

Network View

Properties List

Network Tree

Menues

Documentation

Testing and Distribution

Deliverables

The above image is a visual example of the partition system. Each blue square represents a partition node while each icon represents a view object. There are three levels in the partition tree. The larger network icon spans multiple sub-partitions and remains at level two, while smaller host icons are sorted into partition nodes on level 3. The view window shows the icons that intersect the viewport and the view rectangle used in the visibility test.

Rendering:

Rendering is handled in this order. First, the drawing area is cleared. Next the view rectangle is found in screen coordinates and transformed into world coordinates using the inverse viewing transform. This world space rectangle is the used as a lookup key to find visible icons within the screen. All visibility checks are performed in world coordinates using bounding box intersections. The rectangle is intersected with the spatial partitioning tree starting with the root node. Any net view objects such as routers, networks, or hosts within the current node of the partitioning tree are intersection checked against the viewing rectangle. Next, each of the two sub-partitions is checked against the rectangle. If the partition intersects the viewing rectangle, then that branch of the partition tree is traversed by the rendering algorithm recursively.

Each graph object has a bounding box which is relevant to how it is displayed. Networks are displayed using an icon and text, so its bounding box is created to enclose the icon at its maximum world space size. The same applies to hosts and routers. Network links have a bounding box that encloses the endpoints of the curves which depict the link.

Rearranging Icons in the Network View:

Icons in the network view may not be arranged well because of overlap or bad existing layout information stored in the DML file. For this reason, the ability to move an icon in the graph is important. This is implemented as a user interface feature. To move an icon, the user must click and drag an icon to a new location within the view window. Behind the scenes, this causes many events to happen. First, bounding information stored within the view object and all parent objects is invalidated. These bounding rectangles can later be rebuilt when requested through the ViewObject::GetWorldBoundsWithSubs function. Next, the partition tree information is updated. The new world bounds are checked against the view objects’ partition node. If the view object is still within the node, nothing is done. If the view object position is within the partition node but the bounding box is not, the partition node object bounding box is recalculated. If the view object is outside the bounding box, it is moved to the parent partition node and resorted as long as there is a parent partition node.

Utility Classes:
The classes PointD, RectangleD, and MatrixD are data structures that hold geometric information with double precision components. These were created because Gdk classes such as GdkPoint and GdkRectangle exist but only have integer components. Because the network view has a continuous set of scale values, floating point coordinates were needed.

Conclusion

Final Results and Testing

Our team has successfully completed the graphical user interface that allows visual representation of network objects. There is still room for expansion so simulations may be run and the code is written to maintain expandability.

The GUI has the following elements implemented. Users may either load a preexisting DML file to view the full network or create a network from the add objects menu. Adding, modifying and deleting properties of objects are easily done using the properties list window. Once properties and objects are set a DML file can be saved by the user, so further tests may be performed on the network. With the graphical features of the network objects, network traffic can be visualized by the user by indicating routing paths using the custom routing feature implemented into the GUI.

Testing of the GUI was done by modifying, adding, deleting properties and creating network objects using the menu features.

Future Plans

The most significant feature missing from the graphical user interface is the ability to simulate traffic in the viewable network. Adding this feature will allow the progress of simulating networks in real-time to progress much faster. Some other small details such as faster, more efficient run-time, and better intuitive configuration of network objects would increase the usefulness of the GUI for research simulation.
Knowledge Gained
The knowledge our team gained through the use of Linux and GTK+ will be very useful as Linux becomes more popular in the future. Understanding the cross platform portability GTK+ offers along with the process of iteratively designing the GUI will be knowledge that will carry on to other projects in the future.
PAGE
2

