Rhythm and Hues #3:

Solving Large Linear Systems by Algebraic Multigrid

Final Report

Field Session 2005

Submitted by Ryan Grady (rgrady@mines.edu)

 Aran Stubbs (astubbs@mines.edu)

 Louis Ronat (lronat@mines.edu)

Table of Contents

Executive Summary

Abstract

Introduction

Requirements and Specifications

Design Approach

Results

Project Progression

Conclusions and Future Directions

Glossary

References

Appendix A: User’s Manual for MATLAB Implementation

Appendix B: User’s Manual for C++ Implementation

Appendix C: Programmer’s Manual for MATLAB Implementation

Appendix D: Programmer’s Manual for C++ Implementation

Appendix E: MATLAB Pseudo-Code

Appendix F: C++ Pseudo-Code

3

4

5

6

8

12

14

16

17

18

19

20

21

23

30

33

Executive Summary

Solving very large matrices in the form Au=f is a current challenge in mathematics that has many applications; it often arises for boundary value problems in space. For our client, Rhythm and Hues Studios, systems of equations play a central role in special effects and animation. Several different methods have been developed to find approximate solutions to these systems; we are focusing on the algebraic multigrid method (AMG).

A multigrid (MG) works to quickly solve systems through a combination of approximations using relaxation techniques (such as Jacobi or Gauss-Seidel) and decreasing the size of the matrices and vectors involved though a method of averaging a grid point and its neighbor into a single grid point on a coarser matrix. Relaxation techniques effectively eliminate high frequency error, however their convergence to a solution stalls as they struggle to remove lower frequency errors. By reducing the number of elements in the system low frequency error becomes high frequency error and the relaxation techniques continue to improve the approximation.

The AMG is a more general form of the MG and seeks to implement the same methods used on standard well-defined grids to more general problems where a grid is not easily defined. This method can be applied to a larger class of problems and has many applications. The key component of the AMG is determining the error that cannot be reduced by our relaxation method, which under geometric MG was the Jacobi iterative process. This combined with a broader way to coarsen and interpolate the matrices is necessary for determining an exact algorithm for using MG on a general array of mathematical problems. Implementation of the AMG was in MATLAB as well as C++.

Our AMG implementation performed well on several test cases. AMG excels on problems that have little or no symmetry/geometric basis, however, we did not find a feasible test case of this form. We did test our implementation with a discretization of the two dimensional heat equation. We found our convergence and coarsening statistics were similar to published results.
Abstract

Solving very large matrices in the form Au=f is a current challenge in mathematics that has many applications; it often arises for boundary value problems in space. For our client, Rhythm and Hues Studios, systems of equations play a central role in special effects and animation. Several different methods have been developed to find approximate solutions to these systems; we are focusing on the algebraic multigrid method (AMG).

A multigrid (MG) works to quickly solve systems through a combination of approximations using relaxation techniques (such as Jacobi or Gauss-Seidel) and decreasing the size of the matrices and vectors involved though a method of averaging a grid point and its neighbor into a single grid point on a coarser matrix. Relaxation techniques effectively eliminate high frequency error, however their convergence to a solution stalls as they struggle to remove lower frequency errors. By reducing the number of elements in the system low frequency error becomes high frequency error and the relaxation techniques continue to improve the approximation.

The AMG is a more general form of the MG and seeks to implement the same methods used on standard well-defined grids to more general problems where a grid is not easily defined. This method can be applied to a larger class of problems and has many applications. The key component of the AMG is determining the error that cannot be reduced by our relaxation method, which under geometric MG was the Jacobi iterative process. This combined with a broader way to coarsen and interpolate the matrices is necessary for determining an exact algorithm for using MG on a general array of mathematical problems. Implementation of the AMG was in MATLAB as well as C++.

Introduction

Our client, Rhythm and Hues, is a special effects firm from Los Angeles. They do animations for commercials and feature films. They have had several technical problems that have resulted in projects this summer. Our project deals with animating cloth and hair, which involves solving very large sparse systems of linear equations.

The solving of small to medium sized systems of linear equations is generally done using the Gauss-Jordan technique. Unfortunately, the systems our client has to solve have from hundreds of thousands to millions of variables. The time required to solve a system using Gauss-Jordan varies as the cube of the number of equations. Since solving a family of 2000 equations takes around 20 seconds using Gauss-Jordan, solving a hundred thousand would take 4 weeks. This is, of course, unacceptable.

Since a perfect solution is not required, other methods, which approximate a solution, will be used. Traditionally, these include relaxation techniques (such as Jacobi iteration, and Gauss-Seidel), as well as geometric Multigrid (where the system is derived from a uniform structure that can be coarsened to a simple (exactly solvable) case, then expanded back to the original form). The relaxation techniques are very good where there is an approximate solution with an error that oscillates around the exact error. Where the error is relatively smooth (staying for long stretches on the same side of the solution), they are very slow indeed. Multigrid methods are so effective as the reduction in the number of elements makes smooth error into oscillatory error, which again can be corrected by relaxation techniques. Geometric Multigrid is excellent where a simple geometry with uniform boundaries exists; neither is the case here.

Multigrid methods are not restricted to geometric cases. Recently, algebraic Multigrid (or AMG for short) has come into favor. Problems that have a complex basis or complex boundary conditions can be reduced topologically rather than geometrically. This Algebraic method involves simplifying on the basis of dependencies, reducing the system into blocks of a larger and larger size, and then returning to the higher level with a better approximation.

Requirements and Specifications

Solution should use AMG.

The solving of large linear systems is not a new problem in applied mathematics. Over the past decades many methods have been developed to solve such systems. Many of these methods (e.g. least squares method, geometric Multigrid) have already been implemented for our specific application. In our application (special effects for motion pictures) the AMG has yet to be utilized. As such, our project will use this new technique to solve large linear (and nearly linear) systems.

We will get a matrix of coefficients that is diagonally dominant, symmetric, and positive definite.

While the technique of AMG is not dependent on a coefficient matrix that is diagonally dominant, and positive definite, by using such a matrix we are more likely to obtain good convergence to a solution. For a matrix to be diagonally dominant the entries on the main diagonal are greater in magnitude than off-diagonal entries. A matrix is symmetric if it is equivalent to its transpose. Finally, a matrix is positive definite if all of its eigenvalues are positive. Our solution assumes symmetry, and works best if diagonally dominant and positive definite.

Solution should be much faster than using Gauss-Jordan or Jacobi methods on the original matrix.

The impetus behind developing an AMG implementation is to replace other methods of solving linear systems. In our application, speed is the desired attribute of any algorithm used to solve linear systems. There are already existent a number of methods to find approximate solutions to linear systems, but they are computationally slow. As such, we require that our AMG implementation be more efficient and use less CPU time than these other methods.

Matrix will be built and match all parameters required.

The AMG finds a solution to system of the form Au=f. Our implementation assumes that we can discretize a problem in such a way to obtain a system of the form defined above. Additionally, we assume that we can define our coefficient matrix in such a way that it fulfills all of the requirements set forth above (i.e. the coefficient matrix is diagonally dominant, symmetric, and positive definite).

There will be a unique solution to the matrix.

The AMG finds a solution to system of the form Au=f. Our implementation assumes that there is a unique solution to this system. If there is no solution or multiple solutions our implementation may not converge to a solution.

Requirements and Specifications (cont.)
Storage and processors sufficient to handle will be available.

Our AMG will be capable of handling a linear system with millions of unknowns. Our implementation for such a system would require a substantial amount of storage in the physical memory. Additionally, we require a processor that is stable and of ample computing power to handle our implementation. We assume that computing resources have sufficient storage and processor power.

Design Approach
Below we describe the elements of our implementation. For further information and pseudo-code for selected routines, please see the appendices.

Decompose into recursive routines.

Each function may refer back to itself using a smaller problem area until a final solution is reached.

Overall process resembling classic Multigrid.

The most important initial step in the building of an AMG solver is the separation into various pieces that are repeated as necessary. These pieces are separated to explain how we will create the whole algorithm as well as to give specifics on how each piece functions inside the Multigrid. The main AMG process will resemble the geometric Multigrid because the steps in both processes are essentially the same.

Each process, assuming we just use a standard V-cycle, begins with a series of Jacobi or Gauss-Seidel Iterations until they have effectively removed the oscillatory components of the error and are now stalling on the smooth components. The technique next calls for a reduction in the size of the equation, a coarsening. In the geometric Multigrid, the coarsening was defined to just decrease the number of points by half and then combine each point and its neighbors into a single point on the coarser grid. The Jacobi or Gauss-Seidel Iterations are then repeated. For the AMG no geometry exists to relate points together on the fine grid. Therefore, we use the dependencies within the matrix to find which variables are most influenced by others. Using a choosing scheme we find the coarse grid points and coarsen using these. The process then goes through additional Jacobi or Gauss-Seidel Iterations and the process is repeated.

When problem size less than threshold, use Gauss-Jordan to get an exact solution.

The process of alternating coarsening and relaxing is useful for keeping a relatively accurate approximation to the solution as we move to coarser and coarser grids. However, when the grid has a small enough number of points we must use a direct solver to find the exact answer to the reduced problem. This is probably most effectively done through a gauss elimination technique or direct division if the coarsened system is 1 by 1.

This solution is then interpolated to finer grids using interpolation operators that are determined as the coarsening is determined. This combined with additional relaxation techniques, forms an approximation to the given equation at the finest level.

Do a Jacobi relaxation until it stalls.

Using Gauss-Seidel or Jacobi iterations removes components of the oscillatory error. This is very useful in Multigrid techniques because as matrices are made smaller through coarsening, smooth error appears more oscillatory. This is mainly due to the total decrease in points in the matrix itself. This means that Gauss-Seidel or Jacobi iterations remove more error on the coarser matrices. These methods are therefore very useful for removing the error and therefore are very necessary to use AMG techniques.

The Jacobi iteration reduces the error to zero at each row, then solves for the variable corresponding to the row number and uses that result for the next iteration (typically with a weighting factor so the solution does not oscillate around the exact solution, but is damped more quickly). The Gauss-Seidel method uses the partial solutions from other rows as part of its cycle (rather than the prior cycles value for the other variables as Jacobi does). A variant on Gauss-Seidel calculating the odd rows first, then the even rows based on the odd rows (known as red-black Gauss Seidel) is also often used in Multigrid – though rarely in AMG.

Since each of these techniques only works well when there is an oscillatory component to the error, we need to stop. This can be found by the largest residual from an iteration not being much smaller than the previous cycle’s largest residual. A decline of less than 20% is a signal to stop.

Select the columns that will go into the coarse grid.

The coefficients of the matrix describe the relationship between the independent variables. A relatively large coefficient means the variables are closely related. Since we can find either variable from its closely related variable, only one of the pair needs to go into the coarse matrix. It does not matter which. Having a symmetric matrix, any time we refer to row or column, we can refer to the other. Column 167 looks identical to row 167.

Several methods exist to determine which relationships are relatively strong. We need a method that is fast (requiring few passes over the data to analyze). Our first choice is to average a column, and take relationships that are significantly greater than the average as strong relationships. Other alternatives are to take the highest absolute value in the column or row (other than the diagonal) and treat all values more than a fifth that value as strong. A disadvantage of that procedure is that it requires an additional pass at each column.

Besides determining which relationships are strong, it is necessary to establish a starting point. Our preferred method is to start at the center and work out. Another alternative is to count the strong relationships in each column, and take the column with the strongest relationships as the starting point. A disadvantage (again) is that this requires another full pass at all columns in the table. Since any strong relationship will do to start with, any initial point suffices.

Having placed a column in the coarse group, walk it to find each strong relationship. For each, put the corresponding column in the fine group. Walk the new fine column looking for strong relationships. If the column strongly related to the new fine column has not yet been measured, count up the strong relationships in it – adding a bonus of 1 for the fine column it relates to. If we already measured the column, just add a bonus.

Each time we walk the cells in a column, include the cell in our running average. This means by the end of the process, we will have looked at every cell at least once, and the running average will be more accurate than after the first pass.

Design Approach (cont.)

When we have finished all the strong relationships from the original coarse column, select the candidate column with the highest weight and make it a coarse column as well. Repeat the processes above, making columns strongly related to coarse columns fine, and selecting new coarse columns while any columns remain.

When all columns have been placed in the coarse or fine group, review each column in the fine group. Make sure it has at least 1 strong relationship to a column in the coarse group (since we use a running average, what relationship is strong changes over the course of the selection process).

Build the I-Matrices.

After the coarse columns have been defined, we need to convert the original matrix into a reduced form. To do this we build a pair of I-Matrices (
[image: image1.wmf]h

h

I

2

 and
[image: image2.wmf]h

h

I

2

). These are referred to as the restriction and interpolation matrices respectively. We use both of these to reduce the matrix, but only need the restriction for building the resultant and the solution going to a coarser grid, and the interpolation only for bringing the solution back into the finer grid.

For all Multigrid cases, the interpolation matrix is a real constant times the restriction matrix transposed. For AMG, this constant is 1. This simplifies building the second from the first. The size of each relates to the size of the original matrix and the new matrix we are building. Using C as the number of rows/columns in the coarsened matrix, and F as the number of rows/columns in the original (finer) matrix, the restriction matrix is F x C, and the interpolation matrix is C x F.

The individual elements in the I-Matrices are derived from a weighting equation that comes from the strong and weak relationships in the original and coarsened matrix. The weights are described below. Element
[image: image3.wmf]ij

w

 goes in row
[image: image4.wmf]i

 of the restriction matrix (for rows that correspond to points not in the coarsened matrix), in the column that corresponds to the coarsened matrix column for which j is the column in the original matrix. For points that do transfer, the row has a 1 in the corresponding column (and zeroes everywhere else).
Design Approach (cont.)

[image: image5.wmf]å

+

-

=

Î

*

+

Î

Î

å

å

w

i

D

n

in

ii

s

i

i

mk

mj

im

ij

a

a

a

a

a

a

W

D

m

C

k

ij

 (Briggs 144).

Since the formula is strongly dependent on the diagonal (which is larger in magnitude than any off-diagonal value), the result will also be larger in magnitude on the diagonal than elsewhere. Elements with many relationships not in the coarse grid will be more significant after coarsening. (Assuming the signs are all negative off diagonal).

Build the A2h matrix.

Once the coarsening scheme has been chosen and the interpolation operator defined, the coarse grid selection of the A matrix from the original equation Au = f is
[image: image6.wmf]h

h

h

h

h

h

I

A

I

A

2

2

2

=

 where
[image: image7.wmf]h

h

I

2

 is the operator that coarsens and
[image: image8.wmf]h

h

I

2

 is the operator that interpolates to the finer grid (Briggs 153).

Build the resultant and solution vectors.

The residual vector is coarsened and interpolated in essentially the same way as the A matrix. The main form is
[image: image9.wmf]h

h

h

h

I

r

r

2

2

=

 and
[image: image10.wmf]h

h

h

h

I

r

r

2

2

=

. These multiplications provide the residual on coarser and finer grids and can be used to find an approximation to the error in the solution, and from this to find an updated approximation to the solution. This is based on
[image: image11.wmf]e

 (error) being u (actual solution) – v (current approximation to the solution), and
[image: image12.wmf]r

 (residual) being
[image: image13.wmf]Ae

. We calculate
[image: image14.wmf]h

e

2

 from
[image: image15.wmf]h

r

2

 (Briggs 153).

Send into Multigrid.

When a new set of
[image: image16.wmf]h

A

2

,
[image: image17.wmf]h

r

2

, and
[image: image18.wmf]h

s

2

 have been produced; call the AMG function using them. On return, interpolate the solution and use Jacobi to relax toward better answer.

Results

The benefits of an AMG algorithm are realized on a problem lacking geometric symmetry or where discretization into a geometric mesh doesn’t make sense. However, we were unable to test our algorithm on such a case as the matrices were prohibitively large for implementation in the C++ or MATLAB environment available to us. We instead chose to test our AMG implementation on the nine-point Laplacian stencil:

[image: image19.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

-

-

-

-

-

-

1

1

1

1

8

1

1

1

1

1

2

h

 (Briggs 147).

This stencil accurately discretizes the two-dimensional heat equation. We analyzed our AMG algorithm using statistics identical to those computed by Briggs, et al. for example 8.18 (Briggs 156-158). Table 1 illustrates that as the AMG V-cycle proceeds and the grids are coarsened the ration of nonzero entries increases until the lowest level is reached. At level 4 the problem is solved directly using Gauss-Jordan on the 15x15 system. Note that at this time, the coefficient matrix is made up entirely of nonzero entries.

[image: image20.emf]Level

Number

of rows

Number of

nonzeros Density

Average

entries

per row

0 484 4224 0.018 8.7

1 172 2408 0.081 14.0

2 77 1540 0.260 20.0

3 32 736 0.719 23.0

4 15 225 1.000 15.0

Table 1: Statistics on coarsening for AMG applied to

the nine-point stencil

In addition to analyzing the composition of the coefficient matrix, we also computed the infinity norm of the residual after execution of each V-cycle. Also, we computed the ratio of consecutive residual infinity norms. This information is displayed in Table 2:

Results (cont.)

[image: image21.emf]V-cycle

Ratio of

0 5.16E+03 -

1 1.85E+03 0.36

2 6.71E+02 0.36

3 2.53E+02 0.38

4 9.81E+01 0.39

5 3.68E+01 0.37

6 1.43E+01 0.39

… - -

17 3.36E-04 0.38

18 8.91E-05 0.27

19 9.95E-06 0.11

Table 2: Convergence of AMG V-

cycles applied to the nine-point

stencil



r



r

It is important to note several things about the Table 2. Firstly, the ratio’s of residual infinity norms is nearly constant; this is similar to the results of Briggs, et al. Briggs, et al. found a nearly constant value for the ratio of the 2-norm when applying AMG V-cycles to a two dimensional problem (Briggs 155). However, it is important to note the difference in magnitude between our ratios and those of Briggs, et al. The difference can be explained by realizing the difference in the geometry of the problem. In another case Briggs, et al. found 2-norm ratios similar ours (Briggs 158).

Project Progression

Week 1:

We began the session by analyzing two different approaches to the problem of solving large sparse matrices quickly. The incomplete Cholesky with the conjugate gradient method is the one currently used by many in the effects industry to solve this problem, however there is much interest in using a multigrid method to approximate the solution. After analyzing both methods, we decided to attempt to create code that efficiently solved the system Au=f using multigrid methods.

After this initial decision, we began studying the various parts necessary to create a multigrid method. The first part we studied was the idea of relaxation to move an approximation to the solution closer to the exact solution. These relaxation techniques are quite powerful but in a variety of different systems function poorly and do not move the approximation any closer to the solution. We implemented these techniques in both MATLAB and C++ as a first step towards the multigrid creation.

Week 2:

Following this, we began working on creating a multigrid solver that relies on assumptions that geometrically two points next to each other in the matrix appear next to each other in the physical interpretation of the problem. This was an important step as it allowed us to familiarize ourselves with how exactly multigrid methods work to approximate the solution.

We began to get approximations to the solution that were converging to the solution under additional iterations using first a simple V-cycle and then a full multigrid cycle. These results were very important for our later attempts to create an algebraic multigrid solver as their basic structure is analogous to the algebraic V-cycle and full multigrid.

Week 3:

Once we had created a geometric multigrid solver, we turned our attention toward the real problem of our session, the creation of an algebraic multigrid method that could effectively solve any linear system quicker than directly solving it and would not require any geometric basis in order to solve the problem. In order to do this, it was necessary to study several different components necessary for defining algebraic interpolation.

The first component we studied was the idea of dependencies, especially distinguishing strong dependencies from weak dependencies. This is necessary to determine which points would be most useful in interpolating from them, a variety of points in the fine grid.

Week 4:

After we understood how to use the dependencies to determine which points were most favorable to be used as points on the coarser grid, we turned our attention to how exactly to coarsen the A matrix as well as how to approximate the error on the coarser grid. This is accomplished through the definition of a restriction and interpolation operators, which are by definition the transpose of one another.

Project Progression (cont.)

This was accomplished through the design of an algorithm that choose different points to be used in the coarse grid using the amount of times that variable influenced the others. After this, a weighting scheme was constructed that used the relative amounts of influence they gave to the other variables to determine how they would be interpolated from the coarse grid points. Once this was accomplished, all the pieces were in place to implement an algebraic multigrid method to approximate solutions to linear problems.

Week 5:

Once we had all the necessary pieces, it was simply a matter of consolidating them into a V-Cycle to finally be implemented for an algebraic multigrid. We used the same basic structure for the V-Cycle as it was implemented in the geometric case and were able to achieve good results as the method converged to the solution.

We achieved a program that was reasonably successful at approximating the solution and could get as close as necessary when applied repeatedly. Once we had accomplished this we began documenting our exact figures and writing the reports, which occupied our time until the end of the session.

Conclusions and Future Directions

Over the course of this session we have worked on using multigrid methods to solve large linear equations of the form Au=f. We began with using simple coarsening that relied on using the geometric situation of a particular problem and moved to developing a method and a program that approximates the solution to the given problem without any reliance on the geometric situation of the problem. Rather it uses the dependencies within the A matrix to determine how to effectively coarsen while still maintaining the general structure of the matrix.

Future work in this subject could work to reduce the time necessary to do these calculations, as this would make this method even more valuable. More work could also be done in generalizing the techniques so more classes of A matrices could be effectively solved. This would include changing the way strong and weak dependencies are determined to allow for both positive and negative off diagonal entries as well as a different weighting scheme that could, in theory reduce the necessity of severely larger diagonal entries in the A matrix.
Glossary

AMG (Algebraic Multigrid)-using inherent dependencies inside the A matrix to determine which points would be the most useful in interpolation.

Coarsen-act of reducing the number of variables in the linear equation in order to reduce the speed necessary to solve it directly. Analogous to restriction.

Full Multigrid-coarsening to the coarsest grid before any other calculations are done, this is then used as an initial approximation to the solution and successively interpolated and used in a V-cycle at each following level.

Geometric Multigrid-using the geometric situation of a particular problem to determine how points influence each other, namely that adjacent points influence each other and non-adjacent points do not.

Interpolate-act of increasing the number of variables in the linear equation in order to increase the accuracy of the approximation to the actual solution. This is analogous to movement to a finer grid.

Relaxation-method of approximating the solution to the equation through iterative methods. We implemented both Jacobi and Gauss-Seidel methods.

V-Cycle-using the ideas of error and residual to find an initial approximation using relaxation, then calculating the residual of this approximation, then successively coarsening this and relaxing to produce an approximation to the exact residual that can be used to better approximate the exact solution.
References

Briggs, Henson, and McCormick, “A Multigrid Tutorial, 2nd Edition,” SIAM publications, 2000.

“MATLAB Version 6.5.0.180913a,” The Mathworks, Inc. 2002.

Appendix A: User’s Manual for MATLAB Implementation

We have defined several different functions that can be used in a MATLAB environment to accomplish the said goals. The necessary inputs to the function are as follows, from the equation Au=f:

· Matrix A, assumed to be type M, e.g. relatively larger diagonal entries than off diagonals, off diagonal entries negative

· Vector f, contains the right hand side of the initial linear equation

· Vector v, an initial approximation to the solution vector u

· Integer n, the number of times relaxation is done at each point

· Theta, a number between zero and one, that when multiplied by the largest non-diagonal entry gives the threshold for a particular point to have a strong relationship

To use the function FAMG only 4 inputs are necessary:

· Matrix A, same as above

· Vector f, same as above

· Theta, same as above

· Integer n, serves dual purpose to determine number of V cycles per interpolation and multiplied by 5 to give number of relaxations

Appendix B: User’s Manual for C++ Implementation

We have designed several functions that can be used in a C++ environment (or related object oriented environments). These are contained in a general matrix handling class: RH3_MatSolve. The class header is gaussinc.h, and the function body is gaussfun.h. The class uses a structure of “fred”, but this can be replaced to a typedef to some other vector form if desired. The structure, a typedef for the integer type myInt (here represented by a long int), and various constants are in the class header. Several standard C++ includes are expected: math.h, fstream.h, and iomanip.h.

The matrix loading functions either request a flat file containing a constant of A, followed by row count, then column count (separated by spaces), then entries for each cell, or if a matrix is available in memory already, a row count, a column count, and an array of references to rows of the matrix. There are also solution loading and unloading functions, resultant loading, matrix unloading (to a file only), and access to internal variables (count of relaxations for the current level, and a summary of relaxations at all levels, plus the number of v-cycles from the current level down). A debug mode has been included, set by a public variable.

The class works well for moderate size matrices, that are relatively M like. It uses too much space for very large matrices, and the AMG function never works well on tiny matrices. The coarsening function has been tested through 4K of rows, but that is too large to build an A2h matrix, much less call the Multigrid method on it. Arrays of 700 rows have successfully been done with full AMG – but others around the same size have failed after about 30 v-cycles. The program stores matrices in raw form, only doing row-condensing when needed (as for example when building the A2h and I matrices).

Appendix C: Programmer’s Manual for MATLAB Implementation

This section provides a brief description of the MATLAB functions that make up the final implementation of AMG. Each description includes functional dependencies. Also, an architectural diagram is located at the end of the section.

Coarsechoose3.m.

This function performs the selection of a coarser grid as described above; it invokes depend.m. The function performs selection of elements for a coarser grid such that the two heuristics put forward by Briggs, et al. (page 146) are met.

GS.m.

This function performs Gauss-Seidel relaxation. For a more detailed discussion on Gauss-Seidel relaxation see Briggs, et al. pages 10-11.

depend.m.

This function generates a matrix with entries of 1 where entries are strongly dependent and 0 elsewhere. Dependence is classified using the criteria in Briggs, et al. page 141.

W.m.

This function calculates the interpolation weight for a specific entry. The weights are calculated according to Briggs, et al. page 144.

buildI.m.

This function builds the interpolation matrix, it invokes w.m. For more on interpolation see Briggs, et al. page 142.

AMGVcycle3.m.

This function performs the a V-Cycle of AMG, it invokes Coarsechoose3.m, GS.m, depend.m, w.m, and buildI.m. The V-Cycle algorithm is described in Briggs, et al. page 153.

FAMG.m

This function performs a full multigrid algorithm using AMG. The design of a full multigrid is described on page 43 of Briggs, et al.

An architectural diagram of AMG implementation in MATLAB.
Appendix D: Programmer’s Manual for C++ Implementation

a) Class RH3_MatSolve
This class is a general matrix handling class. It has methods for loading a matrix from a flat file or memory (and 3 different sample functions), unloading a matrix to a flat file, loading an estimated solution from memory, unloading a solution to a flat file or memory, displaying a matrix to the screen, and using various tools to solve matrices (Gauss-Jordan, Gauss-Seidel, Jacobi iterations, Geometric Multigrid, and Algebraic Multigrid). In debug mode, it gives information about the process as it runs. It tracks the total number of relaxations made at all levels (and the depth of coarsening for MG and AMG).

The class header is named gaussinc.h and the function body is name gaussfun.h . I also include a shell to invoke it (gausmain.cpp), but it is intended to be used in a larger context.

I) Public methods.

Double abs(double) : This method returns the absolute value (as a double) of its argument.

Void backup_matrix() : This method backs up the augmented matrix (A matrix plus an additional column for resultant) to an external data store.

Void backup_solution() : This method backs up the current solution vector to an external data store.

Void display_solution() : This method displays the current solution on cout (normally the users monitor), with page breaks every 20 points.

Void gaussJordan() : This method incorporates the whole Gauss-Jordan process, including loading a matrix (if none in memory), converting to upper triangular form, diagonalizing, and showing the user the results.

Void jacobi(int count) : This method does Jacobi relaxations recursively until 1) the residue is less than the overall tolerance, 2) we have attempted the maximum total number of solutions represented by count, or 3) the current attempt is not at least 5% better than the previous solution.

Void load_matrix() : This method loads the augmented matrix from an external data source. Format is: 1 byte char (A in this context), space, count of rows, space, count of columns, space, first element of first row, space, second element of first row, etc. Each space can be a new line. Method errors if insufficient data to fill the matrix as described, or not sufficient to get a solution in theory. It clears all memory variables for the class prior to loading (since a new matrix requires new I, RJ, A2h, etc.).

Void loadMatrix(int rows, int columns, fred * matrix[]) : This method loads the augmented matrix from a passed array of pointers to rows of a matrix. As below, fred is an array of doubles with a fixed size (since vectors as a class have an enormous footprint associated with them). It clears all memory variables for the class prior to loading (since a new matrix requires new I, RJ, A2h, etc.).

Void loadSolution(fred * &temp) : This method loads a solution from a pointer to an array of doubles.

Void multigrid (char type, double tolerance) : This method attempts Multigrid to solve a matrix already loaded into memory. Type is U (unknown), A (Algebraic), 1, 2, or 3 (Geometric of specified dimension). Type U does an analysis to convert to one of the other types. Each is optional: defaulting to U, class tolerance. The method invokes Seidel until it stalls, then if we don’t have a solution it builds I-Matrices and from them the A2h matrix. It generates a child from the A2h and performs Multigrid on that. Upon return from child, it interpolates the results to form an updated solution and passes that through Seidel again. If we are still not close enough to a solution (but are still approaching one) and are below the class solution limit, we re-invoke Multigrid. It is written in such a way that Jacobi can replace Seidel with 2 pair of line changes.

Double obtainMaxResidue () : This method returns the largest residue for the current solution.

Int obtainMaxSolutions () : This method returns the total number of solutions attempted, across multiple layers and failed attempts. On the unlikely case the matrix collapses at a lower layer, it is bumped up by the size of the layer (to hasten the end of the process).

Void obtainResidue (fred * &temp) : This method gives the user the residue, placing it into an array of double to which the user gives us a pointer.

Int obtainSize () : This method returns the number of rows in the matrix to the user.

Int obtainSolutionCount () : This method returns the number of solutions at the current layer only.

Void obtainSolution (fred * &temp) : This method gives the user the current solution, placing it into an array of double to which the users gives us a pointer.

Void sample1 (int size, double sigma) : This method loads a sample matrix (1-Dimensional heat equation) of size specified by the user into memory.

Void sample2 (int size) : This method loads a sample matrix (very ugly indeed) of size specified by the user into memory.

Void sample3 (int size, double sigma) : This method loads a sample matrix (2-Dimensional heat equation, for a vector solution) of size specified by the user into memory.

Void seidel (int limit) : This method does red-black Gauss-Seidel relaxations recursively until 1) the residue is less than the overall tolerance, 2) we have attempted the maximum total number of solutions represented by limit, or 3) the current attempt is not at least 5% better than the previous solution.

II) Private methods.

Void bad_termination() : This method returns to the user a partial solution when Gauss-Jordan fails.

Void buildA2h () : This method builds the A2h matrix from the A matrix and the 2 I-matrices.

Void buildIs (char &type) : This method builds both I-Matrices of the type specified. If no type given, it will determine the type from an analysis of the A matrix, and return the type to the calling function.

Void buildI_1D () : This method builds the 1-Dimensional form of the I-Matrices.

Void buildI_2D () : This method builds the 2-Dimensional form of the I-Matrices.

Void buildI_3D () : This method builds the 3-Dimensional form of the I-Matrices.

Void buildI_A () : This method builds the Algebraic form of the I-Matrices. See coarsening algorithm and weighting algorithm for details.

Void buildI_A_condense (int row) : This method condenses a row of the matrix for subsequent processes.

Void buildI_A_select_coarse() : This method assigns the rows to coarse or fine set, and numbers the coarse set.

Void buildI_A_weight(int row) : This method assigns the weights for 1 row of the I(h->2h) matrix, and the corresponding column in I(2h->h).

Void buildRJ () : This method builds the RJ matrix (used by Jacobi relaxation).

Void check_pivot (int row, int & column) : This method finds an alternate pivot when Gauss-Jordan cannot use the current row to pivot on.

Void countColumn (int row, char mode) : This method counts the number of above average relationships between points in the solution, adding the absolute value of the cell to a running total and counting the non-zero cells to produce the average. In mode x it also calls prefer to add preference, and in mode p it calls exclude to exclude the close kin.

Void determineBanding (char type) : This method determines the banding around the diagonal based on the type passed to it (to speed up arithmetic later).

Void determineType (char &type) : This method determines the type of the A matrix (1, 2, 3, or A) based on the pattern of data.

Void excludeColumn (int row) : This method places a point in the F (fine, or excluded set) when coarsening a matrix.

Void gauss() : This method converts the augmented matrix to upper triangular form.

Void gj4mg() : This utility method contains Gauss-Jordan invocation on behalf of Multigrid under various conditions, and fails over to Jacobi if Gauss-Jordan doesn’t work.

Void initialize() : This method clears all private data for the class. It is used when we are loading fresh data into the A matrix, so no data about previous A’s cause trouble.

Void jordan() : This method converts an upper triangular augmented matrix into a diagonalized form.

Void mostPreferredColumn() : This method decides which points will go into the coarse grid, and which become fine. Where a point has been picked to add next to coarse, it sets the mode for it. Otherwise, it looks through the counts (and weighs points that have not yet been weighed), finding the highest to coarsen next. It invokes itself recursively until no points are left without a mode.

Void preferColumn(int) : This method adds preference to a point. If the relationships for the point haven’t been counted, it first invokes the count function.

Void reviewExcludes() : This method looks through each point in the excluded set, looking for at least 1 strong relationship to a course point. If no strong relationships exist, the point is moved to the coarse set. The threshold for “strong” changes during coarsening, so some relationships may have fallen below it. Since it is the last function during coarsening, it also sets the coarse column numbers.

Void reviewPreferred() : This debug method looks for strong relationships among coarse points, returning an error message for each to the user. It is only invoked in debug mode.

Void seidel_loop (int row) : This method processes a single row during Seidel process (which has parallel loops for 2 passes).

Void termination() : This method takes the results from Gauss-Jordan and puts them into the solution array, then invokes public display solution method to show them to the user.

III) Public data.

Char debug : y (in debug mode). Anything else ignored. Debug shows progress through the class as we build various internal matrices and do Multigrid stuff. Not used in production environment.

Double depth: used to discriminate among behaviors in Multigrid, since we want to keep going at the original level until we solve, but will stop early at lower levels (once it stalls there).

IV) Private data.

Char built_A2h (Boolean, y we have built the A2h matrix, n we have not).

Char built_rj (Boolean, y we have built the RJ matrix, n we have not).

Char had_error (Boolean, y something horrible has happened, die as gracefully as possible, n we are still functioning).

Char Is_built (Boolean, y we have built the I-Matrices, n we have not).

Char run_option A (from older uses of class, ignore this).

Double localJacobiW (weight used in a particular iteration of Jacobi, it can be changed independently of the overall class weight if needed).

Double localMinPrefer (This is the local minimum ratio of threshold for strong relationship to average of all cells. It starts as class constant, but is adjusted down based on table size and lack of success during count function).

Double localTolerance (this is used to decide what solution is good enough. It is adjusted by Jacobi and Multigrid when appropriate).

Double tally (the sum of absolute values of all the cells visited by the coarsening algorithm).

Int coarseCount (Number of points going into the A2h matrix).

Int column_count (Number of columns in the A matrix).

Int maxSolutions (Number of solutions attempted at all layers).

Int mostPreferred (Index to the point we are likely to next add to the coarse matrix).

Int row_count (Number of rows in the A matrix).

Int solution_count (Number of solution vectors in the solution matrix, which should match the number of residue vectors in the residue matrix for Jacobi and Multigrid).

Int tallyCount (Number of cells included in the current average).

RH3_MatSolve * child (pointer to the child instance of the class, used in Multigrid process).

Char columnMode [MAXROWS] vector of modes of points.

Int columnWeight [MAXROWS] vector of weights of points.

Int highEntry[MAXROWS] vector of last non-zero column for rows.

Int lowEntry[MAXROWS] vector of first non-zero column for rows.

Int newColumn[MAXROWS] vector of coarse point number, zero for fine points.

Fred * aMatrix[MAXROWS] vector of pointers to rows of the A matrix (augmented by the resultant in the last column).

Fred * A2h[MAXROWS] vector of pointers to rows of the augmented coarsened (A2h) matrix. Again, the resultant (or residual for algebraic Multigrid) is the last column.

Fred * I1[MAXROWS] vector of pointers to rows of the I1 (interpolative) matrix. It has as many rows as A, and as many columns as A2h has rows.

Fred * I2[MAXROWS] vector of pointers to rows of the I2 (restrictive) matrix. It has as many rows as A2h, and as many columns as A has rows.

Fred * residue[MAXSOLVE] vector of pointers to vectors of residues. Zeroeth value entry is the maximum for that residue.

Fred * RJ[MAXROWS] vector of pointers to rows of the RJ matrix (used in Jacobi). Square matrix with same number of rows as A matrix.

Fred * solution[MAXSOLVE] vector of pointers to vectors of solutions.

V) Miscellaneous considerations.

Integer as used various places represents an index or counter, it should be of sufficient size to handle the largest point count as used. I therefore use a myInt typedef in the class header. This should be specialized for the largest integer-like type available.

I use 1 as the starting point in all vectors (reserving 0 for summary data). Entry 0 of each residue is the highest absolute value entry for the set. The 0th solution vector and residue vector are generated in Jacobi if no initial solution is given (they have zero in each cell, except the 0th cell of the 0th residue is twice class tolerance to keep us in the loop).

Fred (below) is used in place of vector (which has methods we don’t use). Whatever vector-like form it takes, pointers to it are used in all the arrays.

Work fields (typically double) are used scattered throughout. If the nature of fred changes, these need to be retyped as well.

Method build_A2h is SLOW!!! It may need to be redesigned using condensed representation of I-Matrices. It typically took 80% of the total time during AMG. It is called once at the root level, and 1 time for each new instance at lower levels. (Example size 16411 builds size 8206 7 separate times, the method is invoked 7 times in the 8206 instances, but only once in the 16411 instance).

b) Structure fred.

This is a private representation of the data portion of vector. It is exposed (not buried in the class definition) so users of the class can build their own to use in passing matrices and solutions in and out. It has a fixed array of double precision floating point numbers. It can be changed to floats if lower precision is OK. If higher precision is needed, use an alternate representation (but remember to change work variables as well). C++ automatically converts between floats and doubles, as long as the size of the number wouldn’t overflow the float.

c) Miscellaneous.

All capital values are constants (#define) interpreted at compile time.

I) Constants

CYCLIC (The numbers of cycles of Jacobi before changing mesh)

JACOBIW (The class default Jacobi weight)

MAXNAME (The longest allowed file name)

MAXROWS (The width of a fred, and the maximum size of an array)

MAXSOLVE (The number of solutions/residues for Jacobi, and the maximum recursive iterations for Multigrid)

MINGRID (The minimum number of rows to Multigrid on, anything less goes to Gauss-Jordan for an exact solution)

MINPREFER (The starting minimum ratio to average of all cells so far to treat a relationship between points as strong)

PRECISION (The number of digits to display on backups, and in user messages)

TOLERANCE (Any number whose absolute value is less than this during a computation is treated as zero)
Appendix E: MATLAB Pseudo-code

Coarse choose

Before using y coarse choosing function, I call a function called depend that creates a matrix of the dependencies.

It does this by starting at the top row and finding the maximum negative (M matrix) off diagonal element.

It then multiplies the positive of this by our inputted theta value to create a threshold value.

It then goes through every other element in the row and checks if it’s larger than the threshold value.

This process is then repeated for the second row, then third, all the way to the last row.

It outputs a Boolean type matrix of the same size as A with ones in the locations with strong dependencies (i.e. entry larger than threshold value) and zeros everywhere else.

Once this Boolean type matrix, called Depend matrix, is created, the chooser begins.

1. Each of the columns in the Depend Matrix is summed to determine which variable influences the most other variables through strong dependencies. This creates a vector called Influence with the ith entry being the total number of times the ith variable strongly influences other variables.

2. The maximum entry out of this vector is then found, and the corresponding variable is chosen as the first coarse variable (coarse point).

3. All of the variables that strongly depend on this variable (which are determined from the Depend matrix) are then chosen as fine variables (fine points).

4. The A matrix is then altered to remove the variables that have been chosen as coarse or fine by changing all the chosen variable columns to zero in their entirety.

5. The function depend is then called again to make a new Depend matrix from the altered A matrix.

6. The process is then repeated as necessary until all variables are in either the vector F or C, which are the fine and coarse variables (points) respectively.

These vectors F and C are then used to determine the weights of the points and through this the interpolation operators.
Appendix E: MATLAB Pseudo-Code (cont.)

w.m

out = w(i,j,A,C,theta)

sizeA is number of rows in A

sizeC is number of rows in C

initialize group to be a 1x2 zero matrix

set tempa equal to the ith row of A

set the first row ith column of tempa to 0

set thresh equal to theta multiplied by the max of the absolute values of tempa

initialize count to 1

%%%%%%%%%Assign Elements to Groups%%%%%%%%%%

for ind=1->sizeA

if ind is not equal to 1

temp=-A(i,ind);

if temp is not equal to 0

if temp is greater than thresh

if ind is an entry in C

group(count,1)=ind;

group(count,2)=1;

increment count

else

group(count,1)=ind

group(count,2)=2;

increment count

end if

else

group(count,1)=ind

group(count,2)=3

increment count

end if

end if

end if

end for

initialize ksum, nsum, msum to be 0

set sizeG equal to the number of rows in group

%%%%%%%%%Compute Summations%%%%%%%%%%%%%%%%

for dex=1->sizeG

if group(dex,2) is equal to 3

set nsum equal to itself plus A(i,group(dex,1))

end if

if group(dex,2) is equal to 2

for ex=1->sizeG

if group(ex,2) is equal to 1

increment ksum by A(group(dex,1),group(ex,1))

Appendix E: MATLAB Pseudo-Code (cont.)

end if

end for

set num equal to A(i,group(dex,1)) multiplied by A(group(dex,1),j)

if num is 0

msum remains unchanged

else

increment msum by A(i,group(dex,1)) multiplied by

A(group(dex,1),j) divided by ksum;

end if

set ksum equal to 0

end if

end if

return -(A(i,j)+msum)/(A(i,i)+nsum)

Appendix F: C++ Pseudo-Code

Coarse Chooser Program

Algorithm

1. Start from matrix with no points selected.

2. Pick a preferred row, and mark it as coarse. (Center row will do to start).

3. Mark its strongly linked neighbors as fine.

4. Mark their strongly linked neighbors as preferred, computing overall preference if not already done.

5. Repeat as needed 2-4.

6. Check all fine to make sure they still have a strong link to at least 1 coarse, promoting to coarse if not.

Pseudo-code:

0. Definitions:

Preference Multiplier is a local value that compares the average for the cells visited so far to the threshold for strong connections. For large tables with good variety of connection strength, it should be greater than 1. For small tables, or constant values among all connections it can be less than 1. It starts above 1 and is adjusted down when a column with off-diagonal entries has its weight come out to zero.

Most preferred is the point that we will next put in the coarse set. It is set as we weigh the columns.

Tally and tally count are used to calculate the average of cells visited so far. Some cells may be visited 2 or more times, others only once.

Colors: Yellow is coarse point, Green is a fine point, Blue is preferred (temporary status).

Initialization:

1. All counts are zero.

Initialize tally with center points value, count as 1.

Initialize preference multiplier as universal constant; adjust down for small tables (by 1/square root (table Size)).

Mark center row as most preferred.

Compute average weight of absolute value of non-zero elements in center row.

If center row had a zero count, but at least 1 non zero off diagonal, then bump down preference multiplier (as above) and repeat until count is > 0.

2. Main loop:

2.1. From most preferred row:

Begin Inner loop

2.1.1. Clear most preferred row entry.

2.1.2. Mark row as coarse (yellow).

2.1.3. Walk new coarse row: continuously adjusting average.

2.1.4. For each strong connection (greater than preference multiplier * average):

2.1.4.1. Mark row as excluded (fine or green).

2.1.4.2. Walk newly excluded row: continuously adjust average.

2.1.4.3. For each strong connection from excluded:

2.1.4.3.1. Mark connected row as potentially preferred (blue).

2.1.4.3.2. If not already calculated, compute Count of strong connections (walking row adjusting average continuously).

2.1.4.3.3. If count > most preferred rows count, put row # in most preferred row.

2.1.4.3.4. If count is zero, bump down preference multiplier 5%.

End inner loop. (If we have set a most preferred row, resume at 2.1).

2.2. If no row most preferred, walk count array, marking row with highest weight (not previously marked) as most preferred and resuming main loop.

If no rows marked as preferred, end outer loop (selection is complete).

3. Cleanup:

3.1. Walk all excluded rows: any that have no strong relations to included rows should be migrated to the coarse set. (Since we use a running average, some relationships could have fallen below the threshold).

We also begin the weight calculation here, putting a new row number on the coarse rows.

C++ Code

void RH3_MatSolve::buildI_A () {

// start with the constant from the header, adjust down for table size (small tables need it dinky).

 localMinPrefer = MINPREFER*(1.01-(1/sqrt(row_count)));

 mostPreferred = (row_count+1)/2; // use the center column as preferred column to retain.

 tallyCount++; // we need at least 1, since this is a divisor.

 tally += aMatrix[mostPreferred]->value[mostPreferred]; // so the average is reasonable.

 // obtain the number of important connections for the center, it must be at least 1,

 // adjust the preference weight to accomplish that - and force it if the column has

 // no other non-zero entries.

 for (columnWeight[mostPreferred]=0;

 columnWeight[mostPreferred]==0;

 localMinPrefer *=(1.01-(1/sqrt(row_count)))) {

 countColumn(mostPreferred, 'n');

 if (tallyCount<3) columnWeight [mostPreferred] = 1;

 else {;} // dummy else

 } // end for

 mostPreferredColumn(); // make the center a C and work outward setting Fs and Cs.

 reviewExcludes(); // check for any Fs that need to be promoted to C.

// (code for weighting algorithm here).

 return;

 } // end build I AMG

 // Count column walks a column adding up all non-zero values, and potentially

 // invoking either exclude (for close kin to preferred columns), or prefer

 // (for close kin to excluded columns). Neutral mode ('n') does neither.

 // These may need to call countColumn if the kin is uncounted. We may need

 // to reduce the closeness factor if no close kin found (self ignored).

void RH3_MatSolve::countColumn(myInt column, char mode) {

 myInt temp=tallyCount;

 for (myInt i=1;i<=row_count;i++) {

 double work = abs (aMatrix [column] -> value [i]);

 if (work>TOLERANCE) {

 tallyCount++;

 tally += work;

 if (work>=(tally*localMinPrefer/tallyCount)&&i!=column) {

 columnWeight[column]++;

 if (mode == 'x'&&columnMode[i]!='C'&&columnMode[i]!='F') preferColumn (i);

 if (mode == 'p'&&columnMode[i]!='C'&&columnMode[i]!='F') excludeColumn (i);

 } // end if > average

 } // end if > minimum

 } // end for i

 // when no strong relationships found, but the column has non-zero other than diagonal,

 // bump down the multiplier.

 if (columnWeight[column]==0&&(tallyCount-temp)>1) localMinPrefer *=.95;

 } // end count column

 // exclude column puts a column into the F group, and adds weight

 // to all affiliated columns.

void RH3_MatSolve::excludeColumn(myInt column) {

 if (columnWeight[column]==0) countColumn(column,'x');

 columnMode[column]='F';

 return;

 } // end exclude column

// most preferred column is a recursive routine to build AMG data.

void RH3_MatSolve::mostPreferredColumn() {

 if (mostPreferred==0) {

 for (myInt i=1;i<=row_count;i++) {

 if (columnMode[i] !='F' && columnMode[i] !='C') {

 if (columnWeight[i]==0) countColumn(i,'n');

 if (mostPreferred == 0 || columnWeight[i]>columnWeight[mostPreferred])

 mostPreferred = i;

 } // end if mode

 } // end for i

 } // end if mp

 if (mostPreferred==0) return;

 columnMode[mostPreferred]='C';

 columnWeight[mostPreferred]=0; // gets reset below.

 myInt temp=mostPreferred;

 mostPreferred=0;

 countColumn(temp,'p'); // this can set a new MPC, so clear it first.

 mostPreferredColumn();

 return;

 } // end most preferred column

 // Prefer column adds weight to a column. If column hasn't been counted yet,

 // start by counting it. If the new weight makes it most preferred, set it as

 // such.

void RH3_MatSolve::preferColumn(myInt column) {

 if (columnWeight[column]==0) countColumn(column,'n');

 columnWeight[column]++;

 if (columnMode[column]=='C'||columnMode[column]=='F') return;

 if (mostPreferred==0||columnWeight[column]>columnWeight[mostPreferred])

 mostPreferred=column;

 return;

 } // end prefer column

 // review excludes converts F's to C's if we don't have any strong connections.

void RH3_MatSolve::reviewExcludes() {

 char temp;

 coarseCount = 0;

 for (myInt i=1;i<=row_count;i++) {

 if (columnMode[i]=='F') {

 temp='n'; // boolean: have we matched a coarse connection?

 for (myInt j=1;j<=row_count&&temp=='n';j++)

 if (i!=j&&abs(aMatrix[i]->value[j])>=(tally*localMinPrefer/tallyCount)

 &&columnMode[j]=='C') temp = 'y';

 if (temp=='n') columnMode[i] = 'C';

 } // end if CM

 if (columnMode[i]=='C') newColumn[i]=++coarseCount;

 else newColumn[i]=0;

 } // end for i

 } // end review excludes.

// Debug function: look for a connection between 2 preferred columns.

void RH3_MatSolve::reviewPreferred() {

 char temp;

 for (myInt i=1;i<=row_count;i++) {

 if (columnMode[i]=='C') {

 temp='n'; // boolean: have we matched a coarse connection?

 for (myInt j=1;j<=row_count&&temp=='n';j++)

 if (i!=j&&abs(aMatrix[i]->value[j])>=(tally*localMinPrefer/tallyCount)

 &&columnMode[j]=='C')

cerr<<"Tightly coupled pair:"

 <<i<<" and "<<j<<endl;

 if (temp=='n') columnMode[i] = 'C';

 } // end if CM

 } // end for i

 } // end review Preferred.

Build I

Algorithm

1. Build empty I matrixes:

· Restrictive matrix I (h->2h) size is number of rows in original matrix, by number of columns in new.

· Interpolative matrix I (2h->h) size is number of rows in new matrix, by number of columns in original.

Number the coarse entries from the original matrix.

On each subsequent move to I(h->2h), also move to transpose position in I(2h->h).

2. For each row going from original to new, put a 1 in I (h->2h) with the same row for the row number it is becoming.

· Example: Coarse entries are 1, 3, 6, 11, ...:

· Row 1 column 1 is 1,

· Row 3 column 2 is 1,

· Row 6 column 3 is 1,

· Row 11, column 4 is 1.

· All other elements in those rows are zeroes.

Columns in the rows of I (h->2h) correspond to coarse elements.

5. (Subsequent information on non-coarse):

6. If matrix is stored loosely, generate a structure with original column # and relationship type (c, d, f, or w: that is coarse, diagonal, fine, or weak).

For each row not in the coarse matrix, calculate w (ij) – see appendix. This requires walking secondary relationships (sum of terms for a (mk): m is strong/fine to i and k is strong/coarse to i). We need to calculate w (non-coarse, coarse) only.

7. (From above example: w (2,1), w (2,3), w (2,6), w (2,11), w (4,1), etc.)

8. Build I (2h->h) as transpose of I (h->2h).

Psuedocode:

1. Initialize

1.1. During final stage of selection (reviewExclude), number coarse columns.

1.2. For i 1 to number of rows in original

1.2.1. New row of I2h (size is number of rows in new)

1.2.2. If i < number of rows in new

New row of Ih (size is number of rows in original)

2. Main Loop:

2.1. For i 1 to number of rows in original:

2.1.1. If i in coarse, I2h (i, coarse Column (i)) = 1, escape top (main loop)

Row Condense:

2.1.2. New structure (temporary, drop at close of for i)

2.1.3. For j 1 to number of rows in original:

2.1.3.1. If a (ij) not zero and i not j

2.1.3.2. Build entry in structure with column and group (c, d, f, or w)

Weight formula:

2.1.4. For j 1 to number of rows in structure:

2.1.4.1. If group (j) = c

2.1.4.2. Ih (i, Coarse Column (j)) = - a (i, Raw Column (j))

M loop

2.1.4.3. For m 1 to number of rows in structure

2.1.4.3.1. If group (m) f & abs(a (Raw Column (m), Raw Column (j))) > 0

2.1.4.3.2. Work = 0

K loop

2.1.4.3.3. For k 1 to number of rows in structure

2.1.4.3.3.1. If group (k) = c

2.1.4.3.3.2. Add a (Raw Column (m), Raw Column (k)) to work

End K loop

2.1.4.3.4. If work ~ 0, make it non-zero.

2.1.4.3.5. Subtract a (i, Raw Column (m)) * a (Raw Column (m), Raw Column (j))/work from Ih (i, coarse Column (j))

End m loop

Build denominator

2.1.4.4. Work = a (i,i)

N loop

2.1.4.5. For n 1 to number of rows in structure

2.1.4.5.1. If group (n) = w

2.1.4.5.2. Add a (i,n->column) to work

End n loop

2.1.4.6. If work ~ 0, make it non-zero

2.1.4.7. Ih(i,coarseColumn(j)) = Ih(i,coarseColumn(j))/work

2.1.4.8. I2h (coarseColumn(j),i) = Ih(i,coarseColumn(j))

End j loop

End Main loop

C++ Code:

(fred is a structure containing an array of doubles, vector has too much overhead).

 // Now build the empty shells, and on retained columns mark them as such.

 for (myInt i=1;i<=row_count;i++) {

 I1 [i] = new fred;

 if (i<=coarseCount) I2 [i] = new fred;

 else {;} // dummy else

 if (columnMode[i] == 'C') {

 I1 [i]->value[(newColumn[i])]=1;

 I2 [(newColumn[i])]->value[i]=1;

 } // end if coarse.

 else {;} // dummy else

 } // end for i

 // Excluded columns need an entry per row. Formula is complex, basically it is the old

 // relationship plus an adjustment for the strong relationships (F&C), divided by the old

 // diagonal plus an adjustment for the weak relationships.

 double thresh = localMinPrefer*tally/tallyCount;

// we use it routinely below, and it is no longer changing.

 double work = 0;

 myInt tableCount=0; // count of table entries below.

 char group [MAXROWS];

 myInt column [MAXROWS];

 for (myInt i=1;i<=row_count;i++) {

 if(columnMode[i] == 'F') {

 tableCount = 0;

 for (myInt j=1;j<=row_count;j++) {

 if (i!=j&&abs(aMatrix[i]->value[j])>TOLERANCE) {

 tableCount++;

 column[tableCount]=j;

 if (abs(aMatrix[i]->value[j])<thresh) group[tableCount] = 'w';

 else {

 if (columnMode[j]=='C') group [tableCount] = 'c';

 else group [tableCount] = 's';

 } // end else theta

 } // end if non-zero

 else {;} // dummy else to balance

 } // end for j

 // now that we have condensed the entries, walk them for formula.

 for (myInt j=1;j<=tableCount;j++) {

 // we need an entry in each new column, that is where the entry is a course.

 if (group[j]=='c') {

 // cc is the number of the new (coarsened) matrix's column.

 myInt cc = newColumn [(column[j])];

 // start with the corresponding entry in the original matrix.

 I1 [i] -> value [cc] = - aMatrix [i] -> value [(column[j])];

 // adjust it by the sum of the strong connections to i (m) divided by their strong

 // connections to the rest of the coarse columns (k). If a(mj) = zero, we don't need

 // to add up the divisor (which could be zero too). Divisor should not be zero if

 // a(mj) not zero, since a(mj) is an element in a(mk).

 for (myInt m=1;m<=tableCount;m++) {

 if (group[m]=='f'&&abs(aMatrix[m]->value[(column[j])])>TOLERANCE) {

 // add up all the strong connections to the coarse grid from the elements in the coarse

 // grid strongly related to i.

 work=0;

 for (myInt k=1;k<=tableCount;k++) {

 if (group[k]=='c')

 work += aMatrix [(column[m])] -> value [(column[k])];

 else {;}

 } // end for k

 // prevent division by zero. Sign expected to be negative.

 if (abs(work) < TOLERANCE) work = -1.01 * TOLERANCE;

 I1[i] -> value [cc] -= (aMatrix [i] -> value [(column[m])] *

 aMatrix [(column[m])] -> value [(column[j])]/work);

 } // end if group f

 else {;}

 } // end for m

 // now find the divisor. This is the diagonal adjusted by the sum of weak relationships (n).

 work = aMatrix [i] -> value [i];

 for (myInt n=1;n<=tableCount;n++) {

 if (group[n] == 'w')

 work += aMatrix [i] -> value [(column[n])];

 else {;}

 } // end for n

 // prevent division by zero. Sign expected to be positive.

 if (abs(work) < TOLERANCE) work = 1.01 * TOLERANCE;

 I1[i] -> value [cc] /= work;

 // I2 and I1 are transposes of each, so just copy the entry into the corresponding cell.

 I2[cc] -> value [i] = I1 [i] -> value [cc];

 } // end if cc

 else {;} // dummy else to balance

 } // end for j

 } // end if CM

 else {;} // dummy else to balance

 } // end for i

 return;

 } // end build I AMG

Multigrid

Algorithm

1. Definitions:

Ah matrix – main coefficient matrix.

A2h matrix – coarse grid coefficient matrix.

Relaxer – function to get a better solution from a reasonable guess (may be Jacobi, Conjugant-Gradient, Gauss-Seidel, or red-black Gauss-Seidel).

Row-Condense – a process of extracting the non-zero values from a row of a matrix into a denser form for faster processing (see weight algorithm for example).

2. Initialization:

2.1. If size is small, do Gauss-Jordan to get an exact solution, and leave Multigrid function.

2.2. If type is Algebraic, do an initial call to relaxer until it stalls.

2.3. If no I matrices have been built, build them. (See coarsening and weighting algorithms).

2.4. If no A2h matrix has been built, build it.

2.5. If no child object has been built, build it.

3. Main process:

3.1. From residual of A matrix (rhn = Ah*vhn – f) compute r2h = I2hh*rhn .

3.2. Load resultant of child with residual r2h
3.3. Invoke Multigrid method on child.

3.4. Obtain solution from child.

3.5. Compute new solution on main as vhn+1 = vhn + Ih2h*v2hn . (Since we are solving for e in the child, the interpolator times its solution added to the existing solution gives the new solution).

3.6. Invoke relaxer on main until it stalls.

3.7. If the residue is still too big, re-invoke Multigrid on main.

4. Build A2h.

4.1. Mark A2h as built.

4.2. For each row of Ah matrix:

4.2.1. Build an empty row of work matrix.

4.2.2. Row-condense the row of Ah matrix.

4.2.3. Compute work elements = Ah * Ih2h.

4.3. For each row of A2h matrix (size is coarse count):

4.3.1. Build an empty row of A2h matrix.

4.3.2. Row-condense the row of I2hh matrix.

4.3.3. Compute A2h elements = I2hh * work.

C++ Code:

// Build A2h builds the matrix for the child process in multigrid.

void RH3_MatSolve::buildA2h () {

 built_A2h = 'y';

 myInt startPoint, endPoint;

 // We need a work area for AH * I1 (done first). Result size

 // is row_count rows by coarseCount columns. Row condense to

 // improve efficiency.

 fred * work [row_count+1];

 for (myInt i=1;i<=row_count&&i<=MAXROWS;i++) {

 work [i] = new fred;

 buildI_A_condense(i);

 for (myInt j=1;j<=coarseCount;j++)

 for (myInt n=1;n<=tableCount;n++)

 work [i] -> value [j] +=

 (aMatrix [i] -> value [(column[n])] *

 I1 [(column[n])] -> value [j]);

 if(debug=='y'&&i%100==1)

 cout<<"Debug: building work for size "<<row_count

 <<" on row "<<i

 <<" sc is "<<solution_count<<endl; else {;}

 } // end for i

// debug:

if (debug=='q') {

 RH3_MatSolve * temp=new RH3_MatSolve;

 temp->debug = 'y';

 temp->loadMatrix((0+row_count),(coarseCount+1),work);

 cout<<"Backing up work \n";

 temp->backup_matrix();

 delete temp;

 } // end debug

 for (myInt i=1;i<=coarseCount&&i<=MAXROWS;i++) {

 A2h [i] = new fred;

 // condense a row of I2.

 tableCount = 0;

 for (myInt j=1;j<=row_count;j++) {

 if (abs(I2[i]->value[j])>TOLERANCE) {

 tableCount++;

 column[tableCount]=j;

 } // end if

 } // end for j

 for (myInt j=1;j<=coarseCount;j++) {

 for (myInt k=1;k<=tableCount;k++)

 A2h [i] -> value [j] +=

 (I2 [i] -> value [(column[k])] *

 work [(column[k])] -> value [j]);

 if (abs(A2h[i] -> value [j])< TOLERANCE)

 A2h[i] -> value [j] = 0; else {;}

 } // end for j

 if(debug=='y'&&(i%100==1||i==coarseCount))

 cout<<"Debug: building A2h for size "<<row_count

 <<" on row "<<i

 <<" sc is "<<solution_count

 <<" diagonal is "<<A2h[i]->value[i]<<endl; else {;}

 } // end for i

 if (coarseCount<MAXROWS)

 A2h [coarseCount+1] = new fred;

 else {;}

// debug:

if (debug=='q') {

 RH3_MatSolve * temp=new RH3_MatSolve;

 temp->debug = 'y';

 temp->loadMatrix((0+coarseCount),(coarseCount+1),A2h);

 cout<<"Backing up A2h \n";

 temp->backup_matrix();

 delete temp;

 } // end debug

 return;

 } // end build a2h

// helper functions, Build IA was getting too big.

void RH3_MatSolve::buildI_A_condense(myInt i) {

 double thresh = localMinPrefer*tally/tallyCount;

// we use thresh routinely below, as it is no longer changing.

 tableCount = 0;

 for (myInt j=1;j<=row_count;j++) {

 if (abs(aMatrix[i]->value[j])>TOLERANCE) {

 tableCount++;

 column[tableCount]=j;

 if (i==j) group [tableCount] = 'd';

 else {

 if (abs(aMatrix[i]->value[j])<thresh)

 group[tableCount] = 'w';

 else {

 if (columnMode[j]=='C')

 group [tableCount] = 'c';

 else group [tableCount] = 's';

 } // end else thresh

 } // end else diagonal

 } // end if non-zero

 else {;} // dummy else to balance

 } // end for j

 } // end build IA condense

// Multigrid attempts to solve a matrix by quartering it (half the rows,

// half the columns). It is executed recursively, until the problem set

// is small enough to get an exact solution in a reasonable amount of

// time. We have enough 1-sided ifs and single elses to need to

// close every if with a dummy else. For Algebraic, it needs to build

// a specialized I1 and I2 matrix based on the content of the main

// matrix.

void RH3_MatSolve::multigrid (char type, double methodTolerance) {

 // don't waste effort on small matrices, just gauss-jordan and return.

 // some matrices can't be solved, but Jacobi can get an approximate, so

 // use it if gj fails.

 localTolerance = methodTolerance;

 if (row_count < MINGRID) {

 gj4mg();

 return;

 } // end if

 else {;} // dummy else

 // do an initial relaxation to remove oscillatory error.

 // first establish band width (if possible).

 determineBanding(type);

if (debug=='q')

cout<<"Debug: before relaxing in multigrid, count of "

 <<solution_count<<" has max residue of "

 <<residue[solution_count]->value[0]

 <<" on size "<<row_count<<endl; else {;}

// jacobi(int(solution_count+CYCLIC+sqrt(row_count)));

 seidel(int(solution_count+CYCLIC+sqrt(row_count)));

if (debug=='y'&&depth<.1)

cout<<"Debug: after relaxing in multigrid, count of "

 <<solution_count<<" has max residue of "

 <<residue[solution_count]->value[0]

 <<" on size "<<row_count<<endl; else {;}

 // build the workspace needed.

 fred * child_solution = new fred;

 fred * holdResultant = new fred;

 fred * oldSolution = new fred;

 fred * newSolution = new fred;

 char testchar='n';

 // type 1 has half as many rows in child, 2 a quarter, 3 an eighth.

 // size of A depends on coarsening (typically half or less).

 myInt child_rows = (row_count + 1)/2;

 myInt oldCount = solution_count;

 if (coarseCount ==0) coarseCount = child_rows;

 else {;}

 if (Is_built !='y')

 buildIs(type);

 else {;}

 if (type =='A') child_rows = coarseCount;

 else {;}

 // When the matrix lacks dependence, we may not be able to use AMG,

 // so use gauss-jordan (or at worst Jacobi).

 if (child_rows==row_count) {

 if (debug=='y')

 cerr<<"debug: no dependencies left.\n"; else {;}

 gj4mg();

 return;

 } // end if

 else {;}

 // spin off resultant (it skews the matrix if we include it during

 // matrix multiplication).

 for (myInt i = 1; i<= row_count; i++) {

 holdResultant -> value [i] = aMatrix [i] -> value [column_count];

 aMatrix [i] -> value [column_count] = 0;

 } // end for i

 // now compute A2h = I2 * Ah * I1.

 if (built_A2h != 'y') buildA2h();

 else {;}

 // reload the resultant, and build child's resultant. f2h = I2 * fh.

 // since AMG uses Ae=r (rather than Au=f), resultant is I2h * rh.

 for (myInt i = 1; i<= row_count; i++) {

// debug:

 if (aMatrix [i] == NULL || holdResultant == NULL)

 cerr<<"Bad pointer at row "<<i<<endl; else {;}

 aMatrix [i] -> value [column_count]

 = holdResultant -> value [i];

 if (i<=coarseCount) {

 if (A2h[i] == NULL) {

 cerr<<"bad index for A2h row "<<i

 <<" coarse count is "<<coarseCount<<endl;

 A2h[i] = new fred;

 }

 else{;}

 A2h [i] -> value[child_rows +1] = 0;

 for (myInt j=1;j<=row_count&&j<=MAXROWS;j++) {

 if (type == 'A')

 A2h [i] -> value [child_rows + 1] +=

 (I2 [i] -> value [j] * residue [solution_count]

 -> value [j]);

 else

 A2h [i] -> value [child_rows + 1] +=

 (I2 [i] -> value [j] * holdResultant -> value [j]);

 } // end for j

 } // end if <= CR

 else {;}

 } // end for i

 // if the diagonal of the last row is lower in magnitude than the

 // column beside it,average it with the previous diagonal.

 // (But never on algebraic).

 if (abs(A2h [child_rows] -> value [child_rows])

 < abs(A2h [child_rows] -> value [child_rows -1])&&type!='A')

 A2h [child_rows] -> value [child_rows] =

 (A2h [child_rows] -> value [child_rows]

 +A2h [child_rows-1] -> value [child_rows-1])/2.0;

 // Sometimes, there is not any data left at this point,

 // if so leave gracefully.

 if (abs(A2h [child_rows] -> value [child_rows]) < TOLERANCE) {

 cerr<<"we lost definition during child building, ending\n";

 return;

 } // end if

 else {;}

 // last resultant coming out as 1/4 of next to last, so adjust.

 // now compute the solution v2h = I2 * vh. But not for Algebraic,

 // since we are working on error, rather than raw data there.

 if (type != 'A') {

 A2h [child_rows] -> value [child_rows+1] =

 (A2h [child_rows] -> value [child_rows+1]

 +A2h [child_rows -1] -> value [child_rows+1]

 +A2h [child_rows -2] -> value [child_rows+1])/4;

 for (myInt i=1;i<=child_rows;i++) {

 for (myInt j=1;j<=row_count;j++)

 oldSolution -> value [i] +=

 (I2 [i] -> value [j] * solution [solution_count]

 -> value [j]);

 } // end for i

 } // end if

 else {;}

 // then build child from the pieces.

 child = new RH3_MatSolve;

 child->debug =debug;

 child->depth = depth+1;

 child->loadMatrix(child_rows, (child_rows + 1), A2h);

 child->loadSolution(oldSolution);

 // now have the child try for a solution on the subset

 // (or pass the work on).

 child->multigrid(type,sqrt(TOLERANCE*methodTolerance));

 // limit total iterations

 maxSolutions += child->obtainMaxSolutions();

 if (child->obtainMaxResidue()>6.66*residue[solution_count]->value[0]){

 cerr<<"debug: child residue "<<child->obtainMaxResidue()

 <<" is too much greater than parents residue "

 <<residue[solution_count]->value[0]<<" not integrating!\n";

 delete child_solution;

 child_solution = new fred;

 }

 else child->obtainSolution(child_solution);

 // we are done with the child, discard it.

 delete child;

 child = NULL;

 // count cycles from here downward.

 vCycleCount++;

 // now build a local solution from what the child had, and

 // try relaxation to improve.

 for (myInt i=1;i<=row_count;i++) {

 for (myInt j=1;j<=row_count;j++)

 newSolution -> value [i] +=

 (child_solution -> value [j] * I1 [i] -> value [j]);

 if (type == 'A') {

 newSolution -> value [i]

 += solution [oldCount] -> value [i];

 } // end if AMG

 else {;}

 } // end for i

 // edge of solution not good (1/2 next point in), adjust.

 // But not on algebraic.

 if (type != 'A') {

if (debug=='y') cout<<"Debug: adjusting solution edges.\n"; else {;}

 newSolution -> value [1]

 = 3 * newSolution -> value [2]

 - 2 * newSolution -> value [3];

 newSolution -> value [row_count]

 = 3 * newSolution -> value [row_count -1]

 -2 * newSolution -> value [row_count -2];

 } // end if

 else {;}

 loadSolution(newSolution);

 seidel(int(solution_count+CYCLIC+sqrt(row_count)));

// jacobi(solution_count+CYCLIC);

 if (debug=='y')

 cout<<"Debug: after child, residue is "

 <<residue[solution_count] -> value [0]

 <<" sc "<<solution_count<<" on size "

 <<row_count<<" cycles "<<vCycleCount<<endl; else {;}

 if ((residue[solution_count] -> value [0])

 > (3.1 * residue [oldCount] -> value [0])

 && depth> .1) {

 cerr<<"multigrid worsened error from "<<residue [oldCount] -> value [0]

 <<" at solution # "<<oldCount

 <<" to "<<residue [solution_count] -> value [0]

 <<" at solution # "<<solution_count

 <<" on row size of "<<row_count

 <<endl;

 solution_count = oldCount;

 return;

 } // end if

 else {;}

 if ((residue[solution_count]->value[0]>.95*residue[oldCount]->value[0]

 &&depth>.1)

 ||residue[solution_count]->value[0]>6.6*residue[oldCount]->value[0])

 return;

 else {;}

 oldCount = solution_count;

 if (residue[solution_count] -> value [0] <= localTolerance

 ||maxSolutions>=3.14*MAXSOLVE) return;

 else {;}

 // reset tolerance (since we hopefully are much better).

 localTolerance = methodTolerance;

 multigrid(type, localTolerance);

 seidel(solution_count+CYCLIC);

 return;

 } // end multigrid

FAMG.m

Coarsechoose3.m

GS.m

buildI.m

AMGVcycle3.m

depend.m

w.m

depend.m

PAGE
14

_1180772044.unknown

_1180772147.unknown

_1180772179.unknown

_1180772220.unknown

_1180772237.unknown

_1180772203.unknown

_1180772161.unknown

_1180772112.unknown

_1180772125.unknown

_1180772053.unknown

_1180768988.unknown

_1180771746.unknown

_1180771955.unknown

_1180771710.unknown

_1180768868.unknown

_1180768957.unknown

_1180462001.unknown

_1180518996.xls
Sheet1

		Level		Number of rows		Number of nonzeros		Density		Average entries per row

		0		484		4224		0.018		8.7

		1		172		2408		0.081		14.0

		2		77		1540		0.260		20.0

		3		32		736		0.719		23.0

		4		15		225		1.000		15.0

		Table 1: Statistics on coarsening for AMG applied to the nine-point stencil

_1180768828.unknown

_1180464106.xls
Sheet1

		V-cycle				Ratio of

		0		5.16E+03		-

		1		1.85E+03		0.36

		2		6.71E+02		0.36

		3		2.53E+02		0.38

		4		9.81E+01		0.39

		5		3.68E+01		0.37

		6		1.43E+01		0.39

		…		-		-

		17		3.36E-04		0.38

		18		8.91E-05		0.27

		19		9.95E-06		0.11

		Table 2: Convergence of AMG V-cycles applied to the nine-point stencil

¥

r



r

¥

r



r

MBD0081B5BA.unknown

MBD0081CF41.unknown

_1179580790.unknown

