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Abstract


The goal of our project is to take a three-dimensional surface mesh and build a tetrahedral mesh in the interior.  Specifically the program will read in points that represent a three dimensional, closed surface, containing no holes and produces the tetrahedral mesh inside. We use the Delaunay triangulation algorithm and its refinement algorithms to build the tetrahedral mesh with tetrahedrons with good angles.  By good angles we mean that tetrahedron will not contain extreme angles: too small resulting in needles or too large resulting in slivers.


The program is written in C++ and will ultimately be used on Linux platform.  The program is written so that you can visualize the final tetrahedral mesh using a visualization program we made.  The final product takes a model input and outputs a tetrahedral structure that would fit inside of the model.  This code will be used as a base for developing a better way to simulate skin and muscle tissue in computer graphics. 

Introduction to the Project

	
We have been tasked with the problem of generating a tetrahedral mesh inside a closed surface.  Specifically we want to take a surface and produce that same surface only composed entirely of tetrahedrons.  A tetrahedron is a shape in which all the sides are triangles; this means that a pyramid is not a tetrahedron.  We want to accomplish this so it may be used in simulating muscle tissue and skin in computer graphics.  Lets say that we 

have a tetrahedron as our surface.
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Then we would break that up into other tetrahedrons depending on how large we will allow the volume of each tetrahedron to be.  
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In the picture above three of the tetrahedrons have been colored so the viewer can get an idea of what it would look like inside the surface. 


Our program, written in C++, will take a file input (.obj) that contains points that make up a surface and then produce a visualization of a tetrahedral mesh inside of the surface.  The surface must be closed, convex, and containing no holes.  The program will eventually be run on a Linux platform and use a GLUT visualization.  


We solved this problem by using two implementations, the Delaunay triangulation with Delaunay refinement algorithms, and BCC grid construction, to build our mesh.  The Delaunay algorithm takes a surface and then breaks that surface into a bunch of triangles that have good angles and sizes.  By this we mean that there will be no very large angels or very small angels producing cap, sliver, or needle triangles.  Also we want edges to be near each other in length.  The BCC approach creates the tetra uniformly through the surface then refines and removes unused tetrahedral. So basically we will need to generate points on the inside that will work with points on the surface to build the tetrahedral mesh.

Requirements and Specifications


We mentioned most of our requirements above.  As a quick run through the requirements are:

· Written in C++

· Operates on a Linux Platform

· Take a convex surface and tetrahedralize it

· GLUT visualization

Delaunay Solution Approach and Implementation Details

We tried two separate approaches to solve our problem.  Both approaches share the same goal of creating an application that takes a set of points and tetrahedralizes them, and in a manner such that the tetrahedralization conforms to the Delaunay requirement.  This requirement is that, for all tetrahedra in the tetrahedralization, when a sphere is created with all vertices of the tetrahedron on the surface (the circumsphere), it should contain no other points in the data set.  This requirement is to ensure that the tetrahedralization is as good as possible for the given data set.  


To achieve a tetrahedralization that meets the Delaunay requirement, one of the programs uses a point insertion algorithm, which is taken from Incremental Topological Flipping Works for Regular Triangulations by Edelsbrunner and Shaw.  First, a tetrahedron is constructed that is large enough that it will enclose all of the points in the data set, and furthermore is large enough that it does not interfere with the tetrahedralization of the data set.  Next the points are inserted one at a time into this tetrahedron.  To insert a point, first the program finds what tetrahedron contains the point (a tree structure is used to give the search a good running time).  Then the four vertices of the tetrahedron are used to construct four new tetrahedra.  This is done by interchanging the new point with the first vertex and creating a tetrahedron using those points, then interchanging the new point with the second vertex, and so on.  After this, the program checks to make sure that the tetrahedralization still conforms to the Delaunay requirement, and, if not, it will perform flips to make it meet the requirement (because only one point is inserted at a time, the program only has to check faces close to the inserted point).  The flip performed is a 23-flip, meaning that it takes two tetrahedra and creates three.  To do this, it finds the points in the original tetrahedra that are not on the face that they share.  Then three new tetrahedra are created using both of those points for each, and taking two of the three points from the face.  After this, the program must again check to ensure that the tetrahedralization meets the Delaunay requirement and perform more flips if necessary (this time checking the area close to the flip).  It continues in this way until all of the points have been inserted, and then outputs the vertices and faces in .obj format.


The tree structure to store the tetrahedral was implemented to gain greater efficiency.  Every time a new tetrahedron is created, the tetrahedron (or tetrahedra in the 23-flip case) is given a pointer to the new tetrahedron.  The program also uses an STL vector to store faces.  This was a change from an earlier version of the program (which did not store the faces at all), and was made to improve output speed.  Previously, it output the faces by traversing the entire tree and looking for the leaves (which would be the tetrahedra in the current tetrahedralization).  For large data sets, this took an obscene amount of time (quadruple recursion - one recursive call for each link of the nodes in the tetrahedron tree - is not very fast).  Now, it runs in linear time, because it simply goes through the vector and outputs the face if it is valid (that is, if it does not contain any of the points in the tetrahedron that was created at the beginning to enclose all of the points).  Also, I decided to create a new data structure based on the face data structure with the addition of links to nodes in the tetrahedron tree.  This makes the 23-flip much simpler, because it no longer has to search for which tetrahedra share the face that it is checking.  Instead, it gets the both tetrahedra from the face itself.


The program is written in C++ and is a console application.  The use of C++ allows for easy portability to the Linux platform (it has been written and tested at various stages on Windows, Linux, and Mac OS X).  It was made as a console application to make the best possible use of time – a GUI did not seem necessary, and would take time away from the more important features of the application.

The pseudocode for the above approach is as follows:

Pseudocode:

Main:

Get the points from file and store them in an array of point3Ds:

       point3D points[]

Create the enclosing tetrahedron (it chould be much bigger than all of the points in the data set, so that it does not interfere with the tetrahedralization) (see figure 1)
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points[0] = first vertex of enclosing tetrahedron

points[1] = second vertex of enclosing tetrahedron

points[2] = third vertex of enclosing tetrahedron

points[3] = fourth vertex of enclosing tetrahedron

enclosingTetrahedron.setVertices(-3, -2, -1, 0); <- given values < 1 to make it clear that they 
are not valid points (not in the data set)

tetTreeRoot = new tetrahedronTreeNode(enclosingTetrahedron);

insert the first point inside the enclosing tetrahedron using insertPointInside(...)(see figure2)
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The for loop below is the main loop.  It will insert points one by one and then tetrahedralize them.

for(int i=2; i<=count; ++i)

{

find what tetrahedron points[i] is inside using findEnclosingTet(...)

insert the point inside that tetrahedron using insertPointInside(...) (or insertPointOnFace(...) 

note: insertPointInside calls all the other functions so it takes care of make the new 



tetrahedra Delaunay.

if the point is on a face or insertPointOnEdge(...) ,if the point is on an edge)


after first iteration of for loop you have:
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after the second iteration you have
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note: After this iteration you will have to perform a flip.  See the flip23 function below for the picture.  After the insertion of a point, the faces of the tetrahedron that enclosed that point are checked.  These faces must always be shared by exactly two tetrahedra, unless they are the faces 
of the tetrahedron that is created to enclose all of the points, in which case they shouldn't be flipped anyway.  The program checks the two tetrahedra that share the face to determine if the vertex not in the shared face of one of the tetrahedra is in the circumsphere of the other tetrahedra.  The program does this in the functions below.  
}

for(int i=0; i<count; ++i)

points[i+4].print(fout); <- prints all of the valid points

print all of the valid faces of leaves in the tetrahedron tree

Functions:
insertPointInside(int newPoint, tetrahedronTreeNode *tetTreePtr, tetrahedronTreeNode *tetTreeRoot, point3D pointList[])

{


vector<face> facesToCheck;


tetrahedron tet = tetTreePtr->getData(); tetTreePtr is a pointer to the node that contains the tetrahedron that encloses newPoint


int vertices[4];


for(int i=0; i<4; ++i)



vertices[i]=tet.getVertex(i+1);


create four new tetrahedra with vertices: (see figure 1)


(vertices[0], vertices[1], vertices[2], newPoint)



(vertices[0], vertices[1], newPoint, vertices[3])



(vertices[0], newPoint, vertices[2], vertices[3])



(newPoint, vertices[1], vertices[2], vertices[3])


create four new tetrahedronTreeNodes using the new tetrahedra, and set the links of the original tetrahedron (the one that enclosed the inserted 


point) with the addresses of the new nodes


facesToCheck.push_back(all four faces that do not have newPoint as a vertex);


check the faces in facesToCheck to ensure that the tetrahedralization still meets the Delaunay requirements using reDelaunify(...)

}

(insertPointOnFace(...) and insertPointOnEdge(...) are very similar - more than one tetrahedron is broken up, so the way they are broken up is different, but the basic idea is the same)

void reDelaunify(vector<face> facesToCheck, int numberOfFaces, tetrahedronTreeNode* tetTreeRoot, point3D pointList[])

{


int a, b, c, d, e;


for(int i=0; i<numberOfFaces; ++i)


{



if all of the vertices are invalid (<= 0 )




return;



find the tetrahedra that share facesToCheck[i]



a = the point in the first tetrahedron that is not in the second



e = the point in the second tetrahedron that is not in the first



b, c, and d = the vertices of the face



if(e is in the circumsphere of tetrahedron a, b, c, d)




flip the two tetrahedra using flip23(...)


}

}

void flip23(int a, int b, int c, int d, int e, vector<face>& facesToCheck, tetrahedronTreeNode* tetTreePtr1, tetrahedronTreeNode* tetTreePtr2)

{


create three new tetrahedra with vertices:



(a, b, c, e)



(a, b, d, e)



(a, c, d, e)


create three new tetrahedronTreeNodes using the new tetrahedra, and set the links of the two original tetrahedron with the addresses of the new 

nodes


if(they aren't already in facesToCheck)



add the faces:




a, b, c




b, c, e




a, b, d




b, d, e




a, c, d




c, d, e
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note: The face that connects the first point inserted, the lower right vertex of the giant tetrahedron, and the back vertex of the giant tetrahedron would be flipped.  That is, if you made the the circumsphere of the tetrahedron formed using that face and the third point inserted, the second point inserted (which is a vertex of the other tetrahedron that shares that face) would be inside that sphere.  Coneveniently, that flip would produce the two additional faces needed for the tetrahedron inside, so that should be all that needs done.  (To do the flip, connect the two points in the tetrahedra that are not part of the shared face - in this cases, inserted points 2 and 3 - and then form three new faces using each of the vertices of the shared face, and then remove the shared face; in your drawing though, all you need to do is add a line from the second inserted point to the third)
reDelaunify(...)

}

int findEnclosingTet(int newPoint, tetrahedronTreeNode* tetTreeRoot, tetrahedronTreeNode*& tetTreePtr, point3D pointList[])

{

           tetTreePtr = tetTreeRoot;

           if(tetTreePtr->getLink(1) != NULL && pointIsInside(newPoint, (tetTreePtr->getLink(1))->getData(), pointList))

          findEnclosingTet(newPoint, tetTreeRoot->getLink(1), tetTreePtr, pointList);

          else if(tetTreePtr->getLink(2) != NULL && pointIsInside(newPoint, (tetTreePtr->getLink(2))->getData(), pointList))


findEnclosingTet(newPoint, tetTreeRoot->getLink(2), tetTreePtr, pointList);


else if(tetTreePtr->getLink(3) != NULL && pointIsInside(newPoint, (tetTreePtr->getLink(3))->getData(), pointList))



findEnclosingTet(newPoint, tetTreeRoot->getLink(3), tetTreePtr, pointList);


else if(tetTreePtr->getLink(4) != NULL && pointIsInside(newPoint, (tetTreePtr->getLink(4))->getData(), pointList))



status = findEnclosingTet(newPoint, tetTreeRoot->getLink(4), tetTreePtr, point

}

Data Structures:

point3D - 3 doubles that correspond to the three coordinates (x, y, and z) of a point in 3D space

face - 3 ints which are the indices of the vertices of the face in the point array

tetrahedron - 4 ints which are the indices of the vertices of the tetrahedron in the point array

tetrahedronTreeNode - a tetrahedron, four links (pointers to tetrahedronTreeNodes), and a boolean called inspected

BCC Solution Approach and Implementation Details

The second approach is a parallel of the approached proposed by Neil Molino, Robert Bridson and Ronald Fedkiw. By using a BCC crystalline lattice structure as the basis, the result should yield a very uniform rigid grid of tetrahedral.

[image: image8.emf]


The tetrahedral will be placed in an imaginary grid. The grid will be split into a user defined size cube. This method tetrahedralizes the space covered by the surface. This means that there will be some tetrahedral poking out of the surface that will have to be refined, and some deleted. The tetrahedral will be refined by splitting all tetrahedral near the surface into 8 subsequent tetrahedral.

[image: image9.emf]

Once we have tetrahedralized the grid, we will refine the surfaces ‘n’ times as specified by the user. By looking at each vertex of the tetrahedral we will be able to tell if the vertex is inside the surface or outside, based on the normal associated with the face. If all vertices of the tetrahedral are inside we leave that tetrahedral alone, if all vertices are outside the surface we will completely delete the tetrahedral. If however, there are some vertices inside and outside the surface, we will refine these. By going through this process several times, we will be able to refine the surface correctly. After the final refinement iteration all remaining points along the surface will be pushed to the surface.


We need to use some visualization tools in order to test our software. Tet-view specifically designed to view tetrahedral and OpenGL used for 3d graphics vizualization. Tet-view takes an input as poly file while OpenGL uses a variation of obj file. In order to work with these different applications we needed a way to convert from one file format to the other. This has been done using Perl. We are now able to convert different file formats with ease using two Perl programs that will convert from obj to poly, and back. 


Also, in order to test the software, we are going to have to have some models. As a group we have built an Icosahedra and a Sphere, both of which are triangulated. These models will be used for testing (see below). 
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The pseudo code for this approach is as follows:


The basic upper level flow is as follows: Given the obj file read all data into arrays. Points into the point array, Faces into a triangle array (at the same time update point array such that each point keeps track of what triangles are referencing it.), the normals are associated with each triangle. While reading in the points keep track of the max/min values. Create initial grid by using the max/min values and the size of cube user specifies. Loop through the grid placing every point into an int array for its corresponding cube, using int’s it references the original point list and saves memory. Loop through the grid and add center points and corner points of each cube to the point list and update all cube data members. Create the first round of tetrahedral by putting 4 tetrahedral through each face of the cube and connecting them with the midpoint of the adjacent. Loop through the tetrahedral list and examine each tetrahedral by checking the dist to the surface. Sort into two new list of Tetrahedral one contains the tetrahedral with all vertices in the center of the object the other has Tetrahedral with some vertices inside and outside the object, the tetrahedral with all vertices outside the object are just tossed. Once this done the mix list of Tetrahedral is refined by using a basic algorithm that uses the midpoints of the edges to subdivide the tetrahedral into 8 sub-tetrahedral. After this looping finishes all remaining tetrahedral have the outward vertices pushed to the surface.
Lower level pseudo code
#include "Point.h" //Point class describing the points in 3d

#include "Cube.h" //the cube class will contain tetrahedral

#include "Tetra.h" //Class describing tetrahedral in 3d

#include "Triangle.h" //Class describing triangle in space
void main()

{


dynamic array of points


dynamic array of a list of triangles 


list of tetrahedral

reading in the file

           if vertice



//check to see if array is full



//add new point to list



//Check if new max or min value

          else if face

//check to see if array is full

//add to triangle array

//update vertex  points that face is using point

else if norm    //if normal vector



//The normal is stored in corresponding face

//use datastruct point

//!!!!!!!GRID CREATION!!!!!!//


//Check for shifts, if needed, to shift all points to 1st quad, and ½ cubesize


//alogorithms only work for odd sized grids



//allocate the memory for grid



//Populate the grid with surface points


//Populate the grid with center points of cubes


//Add the vertices of each cube as points


//If the cube array needs space to add more points increase its size



//create initial tetrahedral list

while(user defined count)

//use above tetra list check each tetra to see if inside or outside cube

//put into 2 list mix, final

//set mix list to tetra

//send to refine subfunction

//last loop through skip refine just sort list


push all points in the mix list to surface and add tetra to final list

//Output node file

//Output tetra file

}

Cube Class

//The grid is made of these cubes. Each cube contains a list of points. In the main //program, Cube is set a 3d dimensional array. This class is needed for easy access of //information. This grid will help us to grid out where each point is in space.

Point Class

//The point described in 3d. Has methods like get and set – to set the point in 3d space. It //also contains information about what faces contain this point – to be used later for fast //reference

Tetra Class

//Class to describe tetrahedral in space. This class will contain list of points describing the //tetrahedral. Get methods are used to access the information.

Triangle Class

//Class used to describe a triangle in 3d. It contains the list of point numbers of that //triangle. It also has a normal vector.
Projection Sub-Function Visually

Fig. 1

Fig 2

The vector between  p1 and temp (red) is created and the distances is calculated


        Fig 3 
[image: image12]

Then we find the angle between two red vectors in order to see if the point it above the plane or below. 0-180 the point is above, 180-360 is below.
[image: image13]
BoolProj Sub-Function Visually

Fig 5

bool boolProj(Point p1, Triangle t1, Point *points)


[image: image14]
Find the line that connects P2 to Proj

Fig 6
Fig 8


Find the line that P1 to Proj

Fig 7


[image: image15]
If the intersection points outside triangle, then point does not lie in triangle.

Fig 8 
[image: image16]
Since the intersection is outside of bounds, this function will returns false – meaning that the point cannot be projected onto the surface

Visualization:
The visualization of our final product will be developed using the GLUT utility tool kit in OpenGL.  This is because it is a powerful way to create visualizations that can be done on many platforms, not just windows.  Since it is difficult to view what a surface full of tetrahedrons looks like we will implement several features to make it easier for the viewer to decipher what is going on.  Our first feature is a basic zoom in/out and rotation feature.  This allows the user to re-size the object to any size they wish. The two pictures below show the zoom in/out feature.
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The next is a blending feature.  When blending is enabled the faces of the tetrahedrons become transparent to a level the user can control while viewing with the default being 50%.  This is implemented so the user can view all the sides of the object at the same time. The picture below shows a 50% blend.
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The user can also make the object into a wire frame, so none of the faces will be filled.  The viewer can see all edges in this mode. The next feature is a lighting feature.  This creates a light to be shining down on the object.  The viewer can then rotate the object to see how the light rolls off of the surface. The picture below shows the light source coming from the reader’s left.
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The visualization reads in a file that is similar to the .obj format.  The only difference is that at the beginning of the file the first number represents the total number of vertices and the second number represents the total number of faces.  Then it lists out the coordinates of the vertices followed by the faces.  There are no ‘v’ or ‘f’ characters in this file format.  

Conclusions:


The project was definitely difficult to complete in a six week period, primarily the research was time consuming. This was a research project which involved thinking outside the box and it difficult to put time constraints in research. However the group is satisfied with the results we were able to produce.

The Delaunay approach is currently bogged down in errors that should be addressed before any additional development in that direction can occur. Any future development should concern primarily the additional refinement of the mesh and ability to deal with more complex objects. The BCC approach needs minor error debugging primarily in the area of memory management. Further development could focus on better refinement of the mesh and computational time. 
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