Final Paper
Agilent Technologies Project

[image: image7.jpg][$p50 Process Monitor
Fie Algorkhm Display Options

Heiah [Foad 22

Alam Alert Table
FepFielD

» | cpitBrep
7 ep
i p
g5 ep
B4 ep
ciSep
cii2ien
S ep
a0 ep
ci73ep
cpi78ep
coil771e0

pa_0650-0500f100 - Height

Submitted to

Client: Jeff Harrell, Agilent Technologies

Advisor: Dr. Tankelevich, Colorado School of Mines
Prepared by
Kevin Clark
Andrew Sedlmayr

Table of Contents

Abstract
1
Introduction
1-2

Background
1

Project Overview
1
Requirements Specification
2-4

Non-Functional Requirements
2

Functional Requirements
3
System Design
5-10
Implementation
10-12
Results

12-13
Conclusions and Future Direction
13
Golden, CO

May 23, 2005

Jeff Harrell

Agilent Technologies

Dear Jeff,

As part of our project for Field Session 2005 at the Colorado School of Mines, you tasked us to create a program that would help you represent errors in solder paste deposits on circuit boards inspected by the SP-50 Circuit Board Tester. This program was to read in the .rep files created by the SP-50 and display the statistics of the solder paste deposits on each board inspected. The final program allows the user to determine a certain number of rep files that are used as characterization data and then compares all other boards inspected against that standard. The program also allows users to input tolerance limits and alerts the operator when those error limits had been exceeded. It is simple to navigate to graphs and display error information for all algorithms on the board.

We designed and implemented the SP-50 Monitor which fulfills the requirements set forth in this document. We hope that this program will aid you in successfully proving your concept. If you have any comments or questions or commits please feel free to contact Kevin or Andrew at klclark@mines.edu or asedlmay@mines.edu. We feel that this program will meet and exceed your expectations.
Respectfully,

Kevin Clark

Andrew Sedlmayr

Attachment: 1 Final Report, 1 User Manual, 1 Programmers Manual, 1 CD which includes the source code and the final program build.

Abstract

Agilent Technologies’ SP50 high-speed solder paste inspection system currently performs process characterization and defect prevention of the solder paste process.
A need has been identified to calculate, record, and output important process statistics in an organized and efficient manner. Our group has been tasked with the mission of developing a GUI application, using the C# language, which will display important process flow data. The program will collect information from the operator along with a computer generated report file (.REP) to perform desired operations. There will be both a real time operational mode, which will record and display important statistics while the machine is running, and an offline operational mode that will allow the user to gather important statistics for past sets of processes. The operator will also be able to input a set of alarm parameters that provide a warning when the current data represents an error type situation. This program will be easy to use and will present data in a clean and organized fashion.

Introduction

Background

With unlimited time and money, any manufacturer can produce high-quality printed circuit board assemblies (PCBAs). However, in the real world of electronics manufacturing, time and money are in short supply and profit margins are endangered. The most successful manufacturers are those that accomplish high-quality production while staying on budget. For these manufacturers, Automated Optical Inspection (AOI) is an essential part of their manufacturing process.

The SP50 is a high-speed online, or offline, solder paste inspection system, designed specifically for the Surface Mount Technology (SMT) manufacturing marketplace. Leading the industry in AOI, the SP50 provides automated 3D paste inspection for process characterization and defect prevention.

Unlike manual visual inspection, AOI is fast, accurate, and automated, thus catching more defects faster while increasing the yield of good boards. Utilizing current AOI technology allows for controlling processes and pinpointing board defects that are introduced during paste printing, component placement, and the solder process. The SP50 has been proven to eliminate many of the common and costly defects that plague PCBAs, generating significant cost reductions to manufactures.

Project Overview

The SP50 is made to accommodate most sizes and shapes of circuit boards. The machine is controlled by a software package that gathers and records data on each board being tested. The SP50’s software package processes one board at a time while generating a .REP file that contains height, area, volume, x-offset, and y-offset for all algorithms on the specific board. Each circuit board contains many different shapes and sizes of solder paste deposits. All deposits are identified by the algorithm identifier that created them. If a deposit has the same size and shape, independent of orientation, as another on the board they will have both been created by the same algorithm. A unique board is defined by the specific arrangement of its deposits. Each board design and each algorithm have a unique identifier associated with them that is recoded in the rep files. Taking the measurements and catching defects is only a limited use of the equipment.

By monitoring the statistics for each board and each deposit on that board it is possible to effectively identify process flaws and ultimately extend the functionality of the product. If these statistics exceed a predefined tolerance, an alarm should alert the operator to a potential error in the manufacturing process. Manually sorting through each rep file to obtain, calculate, and compare important statistical data would be extremely time consuming and impossible to accomplish in real time.

To meet this need, Agilent has tasked our team to develop a real time, standalone program that utilizes the rep files from the controlling software to graphically display key process statistics and alarm conditions for the last 30 boards. It is necessary for Agilent to have a clear and easy to use program that will not hinder the controlling software. This program should allow the user to set up alarm tolerance parameters, characterize the board, and execute correctly on a machine that does not directly control the SP50.

Our program acquires the prerecorded measurements of the height, surface area, volume, x-offset, and y-offset of each deposit and uses that information to compute a mean for each algorithm. To obtain board level statistics, it is necessary to compute the mean for all of the algorithms combined. The mean values for two user-selected algorithms will be graphically displayed to the on the front panel. Along with the algorithm information, the front panel will also contain graphs of the mean values of the height, area, volume, x-offset, and y-offset for the entire board. On the main panel an alarm table will display any failures among the last 30 boards. This alarm system utilizes user defined tolerances and calibration information to compute error limits that each algorithm, along with the board, will be checked against to determine failure.

Requirements Specification

Nonfunctional Requirements

General Constraints

The software being designed is subject to multiple constraints. First, the software must run on a Windows PC both independent of and concurrent to the partner software. This will allow for complete functionality to be realized. In addition, it should only require a maximum amount of two hours of training for an operator to become proficient in its use. To realize this goal, it is paramount that a clear and concise user interface be created. The software must process rep files faster than the controlling software is able to generate them. New files must not be produced that will quickly clog the hard drive of the machine it is running on. The software must be able to run continuously, in real time, without causing more than one deadly error per 100 hours of operation. For portability reasons, it is necessary that the program be written in C# .NET. It is also is essential that our software and documentation be completed by 22 June 2005.

Assumptions and dependencies

In order to create the requested software, it was necessary to make a single assumption about its input, that all of the rep files will have been previously time stamped. Additionally, multiple assumptions were made concerning the presence of an operator while the software is in use. The first of these assumptions is that an operator will be present and able to acknowledge alarms within 15 minutes of their activation. This same operator must have the knowledge to select rep files for calibration that represent a good sample set along with set meaningful tolerances. In order for these previous assumptions to be met, it is believed that the operator will have a strong technical background. The final assumption is that the software being created will run faster than the partner software. These assumptions were necessary to add clarity and successfully meet the scope of our project.
Functional Requirements

Priority

There are numerous functional requirements that must be satisfied for our software project to be considered a success. A real time, graphical display of the key process statistics: height, area, and volume on both board and algorithmic levels must be implemented. To accomplish this, a single non-cluttered screen must provide a graphical and statistical snapshot of the current process performance on a board level while providing the ability to navigate to the graphs and statistics of every algorithm contained on the board. The calculation and display of this information is vital to the success of our software.

The graphical user interface must allow input of tolerance in percentage and standard deviation at startup. These tolerances can be global parameters on which each algorithm is judged. When the current board produces an error type situation an alarm must be triggered that alerts the operator to the deficiency. The alarm should be distinctive enough to alert the operator of its activation but should not change the operation of the software. An alarm summary table should be displayed indicating the number of alarms activated by each board.

It is necessary that the software utilize output of the partner software. Once a board is inspected with the current software, a REP output file is created. This output file logs the key process statistics for each deposit on a given board. The software must parse rep files to extract the statistics and calculate board level information by averaging each statistic over all of the deposits. The standard deviation for both board level and algorithmic level must also be monitored and calculated. It is critical that data is stored for the last 30 boards that have been processed. Without storage and accessibility of this information, Agilent will have no use for the software.
The ability to characterize each board type using a user specified amount of files is vital to producing meaningful error limits. Allowing the user to run a program without specifying a calibration will also be important for obtaining a baseline for the actual calibration. In this mode the tolerance levels should be ignored and the alarms disabled. When a new board type is identified, the software should throw out the old tolerance levels and provide the user the ability to re-characterize the board type, as long as there is no previous characterization data stored.

It is necessary that the software contain complete documentation. The documentation style must be clear, extensive, and understandable so that the software is simple to utilize and modify. Inline source code comments and a modular design will provide the understanding needed for troubleshooting and version improvements. To meet this requirement our program will include extensive inline comments along with a user manual. The user manual will clearly explain the usage, information flow, and class structure of our software.
Secondary

Along with the priority requirements previously outlined, there are more requirements that Agilent would like to see incorporated into the product. The options of allowing the operator to re-characterize and modify the tolerance parameters during execution will provide the main benefit of refining the error limits, thus allowing more reliable alarm activation. It would be ideal to display the graphs and statistics of two user-selected algorithms on the front panel because it would provide more information without the need for the operator to manually find it. Providing a summary table of board performance violations on both the board and algorithmic levels on the front panel will also add to information clarity and readiness. Allowing the user to toggle the alarm on and off would be valuable if the operator was unsure of the correct tolerance parameters. Storing and displaying data for the last 30 boards in memory, versus 10, will provide more process information to access, compare, and graph. Last of all, allowing the operator to change the global tolerance parameters to be specific to each algorithm is favorable because the variance for the algorithms with a small data set is greater. This fact demonstrates the potential need for the tolerance parameters to be specific to each algorithm.

Optional

There are several improvements that would greatly enhance the flexibility and functionality of our software. However, the main scope of the software package is not dependent on these improvements and thus if time does not permit they will not be included. The first of these improvements would be to include a status bar on the front panel. This status bar would give the operator key information such as the number of boards processed, current board identifier, and possibly even the amount of system resources are program is currently consuming. Another useful feature would allow the operator the option of pausing the application. Instead of just keeping the history of the last 30 boards, the program would allow the user to specify how many boards they would like to graph and maintain the key statistics that will be useful for other applications. This would provide the user more flexibility instead of just being constrained by hardcoded system parameters. Another improvement would be to allow the software to display algorithms based on their importance, instead of displaying two algorithms specified by the user. The last improvement would be to create an output file that logs all of the key statistics every 10-30 boards while also allowing the user to toggle this output file generation on and off. This feature would be useful for a review of the machine’s performance after finishing its process examinations.
System Design
Overview

To meet the aforementioned criteria, our group has designed a class structure that consists of three main categories: data storage, data acquisition, and user interface. The data storage classes take the information obtained from the data storage handlers to compute and store the mean and standard deviations for each algorithm and the entire board. Our data acquisition classes are designed to separate the important information contained in the rep files and pass the important statistics to the data storage classes. The user interface classes use the data from the storage classes to present, graphically, to the user in a clear and organized manner. The user interface will also provide the user with the ability to modify which algorithm data is displayed, while also allowing the option to change important settings of the program.

Detailed Description

Data Storage

The data storage classes are designed to hold the mean and standard deviation for height, area, volume, x-offset, and y-offset for the entire board along with only the height, area and volume for each algorithm.

The STATISTICS class

The statistics class calculates and stores the mean and standard deviation of the height, area, volume, and x and y offset. The constructor is overloaded so that the statistic stored for an algorithm does not have to maintain the x and y offsets. An instantiation of the statistics class initializes the mean and standard deviation of each variable to zero. As seen in Figure 1, it also has a count of how many values are used to compute the data set as a member variable.

The statistics class has an add() function that receives the parameters for height, area, volume, and x and y offsets. The entire board statistics are the only ones that will utilize the x and y offset information. For every parsed line, this function computes a new mean and standard deviation for each measurement variable. The mean calculation is made using the following formula:

[image: image2.wmf]1

*

'

+

+

=

n

n

n

m

m

Equation 1

where:

 μ’ = new mean value

 μ = mean value prior to new value being added

[image: image3.wmf]n

 = new value to be added to data set.

 n = number of values prior to new value being added

[image: image1]

The standard deviation calculation is computed with the following formula:

s’ =
[image: image4.wmf]n

n

n

n

s

n

n

×

+

×

+

-

+

-

+

×

+

)

1

(

)

(

)

)

1

(

(

)

1

(

2

2

2

2

m

n

m

n

Equation 2

where:

 s’ = new standard deviation

 s = standard deviation prior to new value being added

 μ = mean prior to adding new standard deviation

[image: image5.wmf]n

 = new value to be added to data set

 n = number of values prior to new value being added

Our group made the decision to perform this calculation for each input line instead of loading the entire file into memory and then performing the calculation. It was better to spend more computations than consume all the memory the entire file would take because the REP files can become extremely large. Even with these extra computations our program will still run faster than the program that creates the rep files which meets the speed requirements of our software.

The ALGORITHM class

The Algorithm class is meant to logically represent a physical deposit type on the board. Each algorithm will contain statistics and an identifier. Each algorithm will hold a history of the last 10-30 rep files final statistics. The algorithm class provides an add_stat() function that receives the measurements of height, area and volume specific to the algorithm identifier. The add_stat()updates the identifier and then calls the add() function of the statistics class to update that algorithm’s statistics.

The BOARD class

The Board class is designed to be a logical representation of the physical board. Each board has and identifier, board number, statistics, and a set of algorithms. The board has an add_stat() function, which updates the board statistics then locates the corresponding algorithm identifier in the set and then invokes the specific algorithm’s add_stat() function to update its statistics. Along with the algorithm class the board must retain the statistics of the last 10-30 boards for the graph objects to plot.

Data Acquisition

In our design there will be only one class that is designated as a data acquisition class. Its main task will be to provide the functionality to open, monitor, parse, and insert the information contained in the rep files into the storage classes.

The following is an excerpt from a rep file to be parsed:

Board: etc2-23_top, Operator: developer, 21-Apr-2005 23:53:43, BC: 18BPBHB612A L1 R2.01.00.RC8DL8 0

RefDes Stencil Type Area Vol X Y Ht Err

r1513-1 sp-1 pa_0650x0500f100 750 917 -29 23 196 0

.

.

.

u1903-6 sp-1 pa_0650x1200f100 878 1010 -47 40 184 0

u1903-5 sp-1 pa_0650x1200f100 874 976 -49 42 179 0

This rep file is in ASCII text format. The first two lines contain information such as a board identifier and timestamp. All lines after the first two are measurements taken by the SP50. The RefDes and Stencil information is unnecessary and is discarded. The Type column is necessary to our program because it identifies the algorithm used to create the specific deposit. The next five columns contain the measurements our program needs to compute the averages and standard deviations. The Area and Volume are measured in tenths of a percent, while the x-offset, y-offset, and Height are measured in microns.

The AGSP50 FILE HANDLER class

The File Handler class is designed to remove the necessary information from the rep files, determine if the new board is the same design as the last board, and turn the data over to the storage classes.

The File Handler class holds a string, boardID that is a representation of the board identifier for the current set of boards being processed. This is for the verification check to see if there is a change in the type of board being analyzed.

The main purpose of the File Handler class is fulfilled by the parse() function. The parse() function receives a string that contains the path of the file to be opened. The parse() function opens the file and reads it in line by line. The first line contains a board identifier. This is compared to the variable boardID. If they are the same, the parser calls the add_board() function of the boardID. If the board identifiers are different, the parser needs to clear all board information by reinitializing a new board class object. The file is parsed line by line, starting after the line with the keyword RefDes. For each line the parser divides out the algorithm identifier and the five numerical values and places them in temporary variables. These values are then passed to the board via the add_stat() member function of the board. This is repeated until all of the lines in the file have been processed.
User Interface

The user interface will contain a panel with seven graphs. The graphs will be made with Gigasoft’s ProEssentials version 5 graphing tools, using the basic graphing objects provided. There will be a graph containing information from the last 30 board heights, areas, volumes, x-offsets, and y-offsets. The two other graphs will be of specific algorithms. The user can select the algorithm to be displayed along with the parameter of the graph (Height, Area, or Volume). The graph data of the last 10-30 boards will be retrieved from the storage classes for display.

The panel will give the following options to the user:

· Characterize board

· This option allows the user to either change the characterization data or input new REP files to compute mean values to compare to all other boards.

· Select and/or change algorithm graphs displayed

· Though the software will show all five graphs for board level statistics, the user can navigate to the algorithm level statistics via the user interface.

· Modify tolerance parameters

· The user can change the error limits that are used to raise alarm conditions.

· Exit

· The user can safely exit the program
Timeline

The following table shows our timeline for the successful completion of this project.
Table 1: Key Milestones

	Event
	Date

	Requirements Specification
	23 May 2005

	GUI Prototype
	2 June 2005

	Backend Structure
	3 June 2005

	Parser Complete
	7 June 2005

	Initial Program Release
	10 June 2005

	Testing Complete
	15 June 2005

	Final Implementation
	17 June 2005

	Project Complete
	22 June 2005

The GUI prototype was shown to the client in a meeting on June 2. Our team to received valuable input from the client on the user interface functionality and any design flaws. After initial approval our group will proceeded to implement the other parts of the project. The Gantt chart in Figure 2 graphically illustrates our schedule for this software project.

[image: image6.png]May 15,05

May 22,05

May 29,05

Jun 5,05

Jun 12,05

Jun 19,05

S [T WITTFIS

ST WITIFIS

ST IWITIFIS

ST WITTFIS

ST WITTFIS

STM [T [T

Figure 2: Gantt Chart

Implementation
Overview

The program implementation was accomplished using the C# .NET development language. For portability reasons, it was necessary to the client that we use this language. Along with utilizing C# our group also implemented graphing objects provided by Gigasoft’s ProEssentials graphing package. Our team followed all aspects of the detailed design previously discussed. It was quickly realized that the design was flawless conceptually, but lacked some integration details. The keys to a successful product lie in the method of data storage, file input and output (file IO), and, in particular with the interaction between the GUI and the backend processing.

Our program will begin by checking the default directory for REP files. If there are no REP files in that directory the program will query the user to verify the directory is correct. The last five REP files, determined by the timestamp, will be read in and processed if they are all of from the same board. Any stored calibration and tolerance information will be retrieved and applied. The program then waits for any new rep file to enter into the current directory. Upon arrival the REP files will be parsed and processed.

The user will be able to change and set tolerances at any time during the operation of the program. The tolerances can be entered in sigma or percentage. Upon board change or program exit the calibration and any current tolerances will be written to a file. The operator will also have the option to use the last 2, 4, 6, 8 or 10 boards to create a new characterization of that particular board. By default, no deposit will be monitored against its tolerances. The operator will have the option to turn on the monitoring of each deposit by global tolerances or tolerances specific to that algorithm. The alarm will be turned off when calibration and/or tolerances have not been entered for specific board identifier. The alarm will be turned on when the calibration and tolerances have been set however, the user will have the option to toggle that alarm on and off.

The main panel will contain four board level graphs of height, area, volume, x-offset, and y-offset, where the x and y offsets will be contain on the same graph. Also contained on the front panel will be two user selected algorithm graphs. The user will be able to select which algorithm is to be displayed, along with the parameter against which it is graphed. Finally, that the front panel contains is an alarm table. This alarm table will have a brief description of results of the last 30 boards of the same identifier. If any of the statistics failed for a board or its deposits the operator will have the option to select that timestamp and go to a screen that will display a historical snapshot of the instant that board was processed. The historical data will be written to a file for easy access when selected. If time allows, this program will also have an option to run on a user selected number of pre-created REP files. This feature will be useful for employees who would like to analyze the performance of a specific SP50 without actually running the machine.

Detailed Description

Data Structures

To store the critical information of height, area, volume, x-offset, and y-offset our team developed the container class agSP50_BasicData that will provide functionality of the basic math operators. We chose to represent each value as a float variable that can correctly represent each mean and standard deviation. The float will allow the precision our program requires and will minimize the space required for storage. The agSP50_Standards class will hold the tolerances and calibration for a specific board along with for each specific deposit on that board. This will allow our program to quickly write these key values to a file, once the operator exits or a new board identifier is processed. The quick input of the tolerances and calibration information can be accomplished by reading in a standards file and placing the data into this class for immediate consideration.

File IO

Our team decided that the most straightforward way to save critical standards and historical data would be to write it all out to a file on disk. The calibration and tolerance file will be stored in a specific directory. This directory will contain all of the calibration files for each unique board identifier that has been processed and calibrated. If the operator selects to calibrate a board and an old calibration file exists, the old file will be deleted and replaced by the new calibration information. Our team has decided to use C#’s built in binary serializer, which will allow for an optimal retrieval of key information from our files. The historical information for the last 10-30 boards will be appended to it own specific directory in the case that the operator would like to view the specific failures of each deposit. This directory will never contain more than 30 files and will be named according to timestamp. Monitoring this directory and performing automatic file deletion and creation will not require the operator to continuously delete files created by our program.

GUI to Backend connection
The GUI to backend connection was one of the most challenging aspects of our software development process. Due to our small team size and limited understanding of the development language our team felt it would be difficult to create an effective GUI. We developed the GUI first to gather a greater understanding of C#, along with the added benefit of being able to have part of our final product that could be checked and verified. Each user selection was handled using a different GUI element. Each different form, along with the main panel utilizes the C# System.Windows.Forms library which could be easily created using Microsoft’s Visual C# .NET development environment. The information contained in each form is vital to the operation of the program. This critical information is passed between the forms and the backend board class by adding a board object to the main panel. All other panels and forms communicate with the board through the main panel. The communication between panels was simple and allowed easy implementation of checking the data for errors, before it was finally passed into the controlling structure. Only giving the main panel access to the board prevented having code that is unreliable and difficult to trace. Each time a REP file was processed and the board information is valid, a function is called that will update the graphs with the data of the most recent board. This meant that the board class did not need access to the GUI classes. Therefore, integrating the parser with the main panel and adding the board as a private member will be sufficient for a flawless implementation.

Results
User Friendliness

To meet one of the most critical non-functional requirements of making our program user friendly, we have come up with a testable standard that a new user will be able to utilize this program’s features after a 15 minute class. Our team randomly selected five students to test our program in this fashion. Each of these students could function within our program environment. Although the proficiency was not to the level expected, it is clear that the informed operators of Agilent would be able to use this program wisely after only a short training period. The visual representation of critical data in the form of well labeled graphs and error panels, allowed the operator to quickly view the current status of their manufacturing process. The ability to change the algorithm being displayed on the front panel along with the chance to navigate to alarm situations will be exactly what Agilent has requested. Changing tolerances and characterization data at any time during the program’s operation increases the flexibility of our program to be used on any client site.

Stability

To measure the stability of our program the mean time to critical failure must be measured. We determined that the mean time to critical failure must be greater than 48 hours of continuous operation. This program maintains a circular array that will use only a finite amount of memory for all of our classes. Along with this, the C# programming language provides automatic garbage collection so that unhandled dynamic memory will not grow to consume all system resources. The creation of a new board accommodates the changing of board type in the middle of the programs operation. The memory taken up by the old board is subsequently dumped and returned to the system once the object is no longer referenced.

Problems
During the development of our program we realized that our perceptions of what the client requested were a little different than expected. Along with the need to make minor corrections to the process flow to better meet the client’s expectations, it is clear that some of the IO error checking needed to be more robust. Our program must be able to detect the specific location where the critical information begins in the rep file. Currently our program performs this by looking for keywords located within the file. If the rep files were to ever change format our program would be challenged.

Conclusions

Summary

Time did not allow us to implement all of the optional features described in the requirements section. We have included suggestions on how to improve the software given more time and resources. We were successful in completing the most important requirements along with some additional ascetic features that the client requested. Our group feels that our implementation of the requested program will successfully meet the client’s expectations.
Future Direction
The SP50 Monitor is meant to be used in Agilent Technologies as a proof of concept. It will be used to demonstrate the usefulness of watching the statistical trends of deposit size measurements on a board and algorithmic level across several boards can be helpful to detect errors in the circuit board manufacturing process.
Our team feels that our program can be expanded to include the following functionality. First, the number of rep file data sets that are held in memory and graphed could be defined by the user; it is now hard-coded at 30. This would allow for more boards to be shown and used to monitor the process flow. Another useful feature of our program would be to include a way to process REP files that have already been created. Allow the user to select a list of REP file then processing them all and displaying their information would be ideal. Our group also suggests that the table where all of the alarms are posted be updated to log and display more than 30 boards. We feel that doing this will greatly extended the uses of this product.
Figure 1: Class Diagram

Statistics

private float mean_height

private float mean_area

private float mean_volume

private float mean_x-offset

private float mean_y-offset

private float stdev_height

private float stdev_area

private float stdev_volume

private float stdev_x-offset

private float stdev_y-offset

private int count

public void add (float height,

float area, float volume)

public void add(float height,

float area, float volume, float x-offset, float y-offset,)

Accessors

Algorithm

private Statistics[] algorithmStats

private string identifier

private int lastAlg

public void add_stat(float height,

float area, float volume)

Accessors

Modifiers

Board

private Algorithm[] boardAlgs

private Statistics [] boardStats

private string [] timeStamps

private string identifier

private int lastBoard

private int find_alg(string algIdent)

public void add_stat(float height,

float area, float volume, float x-offset, float y-offset, string algIdent)

void add_board (string timestamp)

Accessors

Modifiers

AGSP50 File Handler

private string boardID

private Board currentBoard

public void parse(string

filename)

private bool newBoard(string

boardName)

User Interface

private Form mainWindow

private Form toleranceDialog

public exit()

public string changeAlgGrph1()

public string changeAlgGrph2()

public string changePrmGrph1()

public string changePrmGrph2()

public Form modifyTolerences()

public void characterizeBoard()

public Form modifyDepositTol()

public bool toggleAlarm()

PAGE

_1179576504.unknown

_1179576505.unknown

_1179576469.unknown

_1179576503.unknown

